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Introduction

Sigma Protocols

Security of Sigma Protocols

Sigma Protocols

P claims that he know some piece of

. . . P %
information such as a secret key to a given
public key. a
—_
A sigma protocol implies: e
» an identification scheme.
> a signature scheme. z
—_

> a zero-knowledge protocol.

» a commitment scheme.



Introduction
rotocols

y of Sigma Protocols

Security of Sigma Protocols

The security of a sigma protocol is based on the hardness of some
computational problem such as:
» Prime factorization: Given n = p - g, find the primes p and q.

» Discrete logarithm: Given h = g mod p, find w.

But, what about lattice problems such as the shortest vector
problem (SVP)?

» Given a lattice ¥, find the shortest vector v in V.

» SVP reduces to the problem of finding small preimages.

» And hence, traditionally sigma protocols are insure when using
lattice problems.



Setup of Protocol 4.1
A Statistically Secure Sigma Protocol Protocol 4.1

Setup of Protocol 4.1 (1/2)

» A polynomial time bounded prover P and verifier V.

> An additive homomorphic function f : (Z",+) — (G, o) such
that f(¢+ d) = f(€) o f(d) for all €,d € Z".

» Theinterval | =[-(S-B—-B);S-B—B] for 5,B > 1.

» The witness w € Z" for the problem x in the relation R where
W] < B, x=(f,y)and y = f(w).

» The commitment scheme commit with public key pk, which
comes in two flavors:

» Unconditional binding and computational hiding.
» Computational binding and perfect hiding.

> The provers abort probability

Priz ¢ 17 =1- (25257



Setup of Protocol 4.1
A Statistically Secure Sigma Protocol Pr 4.1

Setup of Protocol 4.1 (2/2)

» The limit E=1t-(1—Pr[Z ¢ I"]) — t-e where € € (0; 1].
» The linear secret sharing code C = [n+ /, k, d], that satisfies:

» (d* — ¢ — 1)-privacy where d* is the minimum distance of the
dual code C+.

Massey's LSSS: To secret share s € Ff, we choose
c=(c1,...,¢0,Co41y---,C+n) €Er C such that s = (c1,..., )
where (cp41,. .., Cryn) are the shares of s and |C| = g*. And
hence, for Protocol 4.1 we choose:

» ¢ =1 for small codewords

> a large k to increase the number of codewords

» an E such that d > 2-(t — E) where t =n+ ¢
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Setup of Protocol 4.1

A Statistically Secure Sigma Protocol

Protocol 4.1 (1/2)

Prover P(w, x) Verifier V(x)
ri €r Z" such that
Irilloe <S-B
aj = ()
Si €ER 7

com; = commity(a;, s;)

(comy, ..., com;)

ecr{0,1}%




Setup of Protocol 4.1

A Statistically Secure Sigma Protocol

Protocol 4.1 (2/2)

c=C(e)
Zi=r+c-w
if Z € 1" then

Zi = (Z, ai, si)
else Z; = L

c=C(e)
accept iff at least E :
Zi # 1,
com; = commity(aj, Sj)

and (z}) = ajoy©



Setup of Protocol 4.1
A Statistically Secure Sigma Protocol B 4

Theorem (4.2)

Let commit“><" be an unconditional binding and computational
hiding commitment scheme and commit®P" a computational
binding and perfect hiding commitment scheme.

Protocol 4.1 satisfies

commit“®" | commit<?PP
Completeness Statistical Statistical
Special soundness Perfect Statistical
sHVZK Computational Perfect

and hence is a statistically secure sigma protocol.



Setup of Protocol 4.1
A Statistically Secure Sigma Protocol Protocol 4

Theorem (3.1)

Let commit“>" be an unconditional binding and computational
hiding commitment scheme and commit®P" a computational
binding and perfect hiding commitment scheme.

The general framework with abort (Protocol 3.1) satisfies

commit“P-¢h ‘ commit®P"

Completeness Aborts with prob. Pr(Z ¢ I"]

Special soundness Perfect Statistical
sHVZK Computational Perfect
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Proof of Theorem 4.2

Proof of Theorem 4.2

Let (P,V) be the general framework with abort and let (Py, Vy)
be Protocol 4.1.
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Statistical Completeness

Proof of Theorem 4.2 cial Soundness

Statistical Completeness (1/6)

Definition

If Py and Vs follows the protocol on input x and private input w
to Py where (W, x) € R, then is the probability that Vy outputs
reject negligible in t.
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Statistical Completeness
S cial Soundness

Proof of Theorem 4.2

Statistical Completeness (2/6)

Proof.

Assume that Py know a witness w such that (w, x) € R.

We have to prove, that the following limit E implies that Vy only
rejects P with probability negligible in t.

E=t-(1-Pr[Z¢1"])—t-€
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Statistical Completeness

ical Special Soundness

2
Proof of Theorem 4.2 Cenmenta SHVZK

Statistical Completeness (3/6)

A conversation is on the form (com;, c, Z;) for i = 1,...,t where:
» (comy,...,com;) and (Z1,..., 2;) are fully independent
because of the used randomness.

» com; = commitp(ai, i)
» Zi=Llor Z; = (7, a,s)

» cis only (d+ — 2)-wise independent because of the linear
secret sharing code C.

» c=C(e)
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Statistical Completeness

Proof of Theorem 4.2 ecial Soundness

Statistical Completeness (4/6)

We can use the Chernoff-Hoeffding bound with limited
independence (CHwLI).
1. Let X; for i =1,...,t denote the conversations where:

» X; =1 if conversation i is an accepting conversation.
» X; = 0 otherwise.

2. Define X =>1_, X; and pu(t) = t- (1 — Pr[Z ¢ I"]).
3. Let d+ =t -« for some a € [0;1].
4. Define the independence as ¢(t) = (t- o) — 2.
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Statistical Completeness

Statistical Special Soundness

2
Proof of Theorem 4.2 Computational sHVZK

Statistical Completeness (5/6)

CHwLI says that

Pri|X — u(t)] = €- p(1)]
is negligible in t for any £(t) where € is the same as in E.

1. Use CHwLI to argue that X lies between 1 and p(t) — € - p(t)
with probability negligible in t.
2. Prove that |E — u(t)| > € p(t).

I I I 16 /22



Statistical npleteness

Statistical cial Soundness

2
Proof of Theorem 4.2 .

Statistical Completeness (6/6)

[E—p(t)] = [(t- QA =Pr[Z¢&1"]) =t €)= p(t)]
= |(u(t) = t-€) — p(1)]
= |-t
= t-€
> p(t)-e
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Statistical Completeness
Statistical Special Soundness

2
Proof of Theorem 4.2 Computational sHVZK

Statistical Special Soundness (1/3)

Definition

Let (com, c, Z) and (com’, c’, Z') be two accepting conversations
for the same x where ¢ # ¢’. Furthermore, let Ext be a
probabilistic polynomial time knowledge extractor. The probability
that Ext on input (x, com,com’,c,c’, Z, Z') can't extract a
correct witness from the prover is negligible in the length of x.
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Statistical Completeness

Statis pecial Soundness
2
Proof of Theorem 4.2 Computational sHVZK

Statistical Special Soundness (2/3)

Proof.

Let com = (comy,...,com;) and Z = (Z4,..., 2Z;).

1. Assume that Py can produce two accepting conversations
(com,c, Z) and (com’, c’, Z") with different challenges ¢ # ¢’
for (Pz,Vz).

2. Prove that there exists an index j such that (com;, ¢, Z;) and
(comJ’-, ch, ZJ’) are two accepting conversations with different
challenges ¢; # ¢/ for (P, V).

3. Since (P, V) satisfies statistical special soundness, we have
that (Py, Vx) also satisfies this property.
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Statistical Completeness

Proof of Theorem 4.2 Statisf pecial Soundness

Computational sHVZK

Statistical Special Soundness (3/3)

» At most t — E aborting

conversations. . |
+ I

» Z; = 1 for all i between (@)
point (a) and (b).

» Z/ = 1 for all i between
point (c) and (d). ! '

> Make sure that “
Ac,c')y>2-(t— E) for *
all ¢, ¢’ € C by choosing
d>2-(t—E).




Statistical Compl
Statistical Special

2
Proof of Theorem 4.2 Computational sHVZK

Computational sHVZK

Definition

There exists a probabilistic polynomial time simulator Sim, which
on input x and a random challenge ¢, outputs an accepting
conversation (com, ¢, Z) such that Sim(x, ¢) ~¢ (Ps(w), Vs)(x).

Proof.

Since (P, V) satisfies computational sHVZK, we have that

(Px, Vy) also satisfies this property because sHVZK is invariant
under parallel composition.



Conclusion

Conclusion

We have constructed a statistically secure sigma protocol that

satisfies:
commit“®" | commit®P"
Completeness Statistical Statistical
Special soundness Perfect Statistical
sHVZK Computational Perfect

and where we can base the security on:

» The prime factorization problem.
» The discrete logarithm problem.

> Lattice problems such as the shortest vector problem.

N
N
N
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