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Sigma Protocols

P claims that he know some piece of
information such as a secret key to a given
public key.

A sigma protocol implies:

I an identification scheme.

I a signature scheme.

I a zero-knowledge protocol.

I a commitment scheme.
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Security of Sigma Protocols

The security of a sigma protocol is based on the hardness of some
computational problem such as:

I Prime factorization: Given n = p · q, find the primes p and q.

I Discrete logarithm: Given h = gw mod p, find w .

But, what about lattice problems such as the shortest vector
problem (SVP)?

I Given a lattice v̂ , find the shortest vector ~v in v̂ .

I SVP reduces to the problem of finding small preimages.

I And hence, traditionally sigma protocols are insure when using
lattice problems.
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Setup of Protocol 4.1 (1/2)

I A polynomial time bounded prover P and verifier V.

I An additive homomorphic function f : (Zn,+) 7→ (G , ◦) such
that f (~c + ~d) = f (~c) ◦ f (~d) for all ~c, ~d ∈ Zn.

I The interval I = [−(S · B − B);S · B − B] for S ,B ≥ 1.

I The witness ~w ∈ Zn for the problem x in the relation R where
‖~w‖∞ ≤ B, x = (f , y) and y = f (~w).

I The commitment scheme commit with public key pk, which
comes in two flavors:

I Unconditional binding and computational hiding.
I Computational binding and perfect hiding.

I The provers abort probability

Pr[~z /∈ I n ] = 1−
(

2·(S ·B−B)+1
2·(S·B)+1

)n
.

5 / 22



Introduction
A Statistically Secure Sigma Protocol

Proof of Theorem 4.2
Conclusion

Setup of Protocol 4.1
Protocol 4.1
Theorem 4.2
Theorem 3.1

Setup of Protocol 4.1 (1/2)

I A polynomial time bounded prover P and verifier V.

I An additive homomorphic function f : (Zn,+) 7→ (G , ◦) such
that f (~c + ~d) = f (~c) ◦ f (~d) for all ~c, ~d ∈ Zn.

I The interval I = [−(S · B − B);S · B − B] for S ,B ≥ 1.

I The witness ~w ∈ Zn for the problem x in the relation R where
‖~w‖∞ ≤ B, x = (f , y) and y = f (~w).

I The commitment scheme commit with public key pk, which
comes in two flavors:

I Unconditional binding and computational hiding.
I Computational binding and perfect hiding.

I The provers abort probability

Pr[~z /∈ I n ] = 1−
(

2·(S ·B−B)+1
2·(S·B)+1

)n
.

5 / 22



Introduction
A Statistically Secure Sigma Protocol

Proof of Theorem 4.2
Conclusion

Setup of Protocol 4.1
Protocol 4.1
Theorem 4.2
Theorem 3.1

Setup of Protocol 4.1 (1/2)

I A polynomial time bounded prover P and verifier V.

I An additive homomorphic function f : (Zn,+) 7→ (G , ◦) such
that f (~c + ~d) = f (~c) ◦ f (~d) for all ~c, ~d ∈ Zn.

I The interval I = [−(S · B − B);S · B − B] for S ,B ≥ 1.

I The witness ~w ∈ Zn for the problem x in the relation R where
‖~w‖∞ ≤ B, x = (f , y) and y = f (~w).

I The commitment scheme commit with public key pk, which
comes in two flavors:

I Unconditional binding and computational hiding.
I Computational binding and perfect hiding.

I The provers abort probability

Pr[~z /∈ I n ] = 1−
(

2·(S ·B−B)+1
2·(S·B)+1

)n
.

5 / 22



Introduction
A Statistically Secure Sigma Protocol

Proof of Theorem 4.2
Conclusion

Setup of Protocol 4.1
Protocol 4.1
Theorem 4.2
Theorem 3.1

Setup of Protocol 4.1 (1/2)

I A polynomial time bounded prover P and verifier V.

I An additive homomorphic function f : (Zn,+) 7→ (G , ◦) such
that f (~c + ~d) = f (~c) ◦ f (~d) for all ~c, ~d ∈ Zn.

I The interval I = [−(S · B − B);S · B − B] for S ,B ≥ 1.

I The witness ~w ∈ Zn for the problem x in the relation R where
‖~w‖∞ ≤ B, x = (f , y) and y = f (~w).

I The commitment scheme commit with public key pk, which
comes in two flavors:

I Unconditional binding and computational hiding.
I Computational binding and perfect hiding.

I The provers abort probability

Pr[~z /∈ I n ] = 1−
(

2·(S ·B−B)+1
2·(S·B)+1

)n
.

5 / 22



Introduction
A Statistically Secure Sigma Protocol

Proof of Theorem 4.2
Conclusion

Setup of Protocol 4.1
Protocol 4.1
Theorem 4.2
Theorem 3.1

Setup of Protocol 4.1 (1/2)

I A polynomial time bounded prover P and verifier V.

I An additive homomorphic function f : (Zn,+) 7→ (G , ◦) such
that f (~c + ~d) = f (~c) ◦ f (~d) for all ~c, ~d ∈ Zn.

I The interval I = [−(S · B − B);S · B − B] for S ,B ≥ 1.

I The witness ~w ∈ Zn for the problem x in the relation R where
‖~w‖∞ ≤ B, x = (f , y) and y = f (~w).

I The commitment scheme commit with public key pk, which
comes in two flavors:

I Unconditional binding and computational hiding.
I Computational binding and perfect hiding.

I The provers abort probability

Pr[~z /∈ I n ] = 1−
(

2·(S ·B−B)+1
2·(S·B)+1

)n
.

5 / 22



Introduction
A Statistically Secure Sigma Protocol

Proof of Theorem 4.2
Conclusion

Setup of Protocol 4.1
Protocol 4.1
Theorem 4.2
Theorem 3.1

Setup of Protocol 4.1 (1/2)

I A polynomial time bounded prover P and verifier V.

I An additive homomorphic function f : (Zn,+) 7→ (G , ◦) such
that f (~c + ~d) = f (~c) ◦ f (~d) for all ~c, ~d ∈ Zn.

I The interval I = [−(S · B − B);S · B − B] for S ,B ≥ 1.

I The witness ~w ∈ Zn for the problem x in the relation R where
‖~w‖∞ ≤ B, x = (f , y) and y = f (~w).

I The commitment scheme commit with public key pk, which
comes in two flavors:

I Unconditional binding and computational hiding.
I Computational binding and perfect hiding.

I The provers abort probability

Pr[~z /∈ I n ] = 1−
(

2·(S ·B−B)+1
2·(S·B)+1

)n
.

5 / 22



Introduction
A Statistically Secure Sigma Protocol

Proof of Theorem 4.2
Conclusion

Setup of Protocol 4.1
Protocol 4.1
Theorem 4.2
Theorem 3.1

Setup of Protocol 4.1 (2/2)

I The limit E = t · (1− Pr[~z /∈ I n ])− t · ε where ε ∈ (0; 1].

I The linear secret sharing code C = [n + `, k , d ]q that satisfies:

I (d⊥ − `− 1)-privacy where d⊥ is the minimum distance of the
dual code C⊥.

Massey’s LSSS: To secret share s ∈ F`
q we choose

c = (c1, . . . , c`, c`+1, . . . , c`+n) ∈R C such that s = (c1, . . . , c`)
where (c`+1, . . . , c`+n) are the shares of s and |C | = qk . And
hence, for Protocol 4.1 we choose:

I ` = 1 for small codewords

I a large k to increase the number of codewords

I an E such that d > 2 · (t − E ) where t = n + `

6 / 22
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Protocol 4.1 (1/2)

Prover P(~w , x) Verifier V (x)

~ri ∈R Zn such that

‖~ri‖∞ ≤ S · B
ai = f (~ri )

si ∈R Z
comi = commitpk(ai , si )

(com1, . . . , comt)

e ∈R {0, 1}k
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Protocol 4.1
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Protocol 4.1 (2/2)

c = C(e)

~zi = ~ri + c · ~w
if ~zi ∈ I n then

Zi = (~zi , ai , si )

else Zi = ⊥
(Z1, . . . ,Zt)

c = C(e)

accept iff at least E :

Zi 6= ⊥,

comi = commitpk(ai , si )

and f (~zi ) = ai ◦ y c

8 / 22
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Theorem (4.2)

Let commitub,ch be an unconditional binding and computational
hiding commitment scheme and commitcb,ph a computational
binding and perfect hiding commitment scheme.

Protocol 4.1 satisfies

commitub,ch commitcb,ph

Completeness Statistical Statistical
Special soundness Perfect Statistical

sHVZK Computational Perfect

and hence is a statistically secure sigma protocol.
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Theorem (3.1)

Let commitub,ch be an unconditional binding and computational
hiding commitment scheme and commitcb,ph a computational
binding and perfect hiding commitment scheme.

The general framework with abort (Protocol 3.1) satisfies

commitub,ch commitcb,ph

Completeness Aborts with prob. Pr[~z /∈ I n ]
Special soundness Perfect Statistical

sHVZK Computational Perfect
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Proof of Theorem 4.2

Let (P,V) be the general framework with abort and let (PΣ,VΣ)
be Protocol 4.1.
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Computational sHVZK

Statistical Completeness (1/6)

Definition
If PΣ and VΣ follows the protocol on input x and private input ~w
to PΣ where (~w , x) ∈ R, then is the probability that VΣ outputs
reject negligible in t.
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Statistical Completeness (2/6)

Proof.
Assume that PΣ know a witness ~w such that (~w , x) ∈ R.

We have to prove, that the following limit E implies that VΣ only
rejects PΣ with probability negligible in t.

E = t · (1− Pr[~z /∈ I n ])− t · ε
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Statistical Completeness (3/6)

A conversation is on the form (comi , c ,Zi ) for i = 1, . . . , t where:

I (com1, . . . , comt) and (Z1, . . . ,Zt) are fully independent
because of the used randomness.

I comi = commitpk(ai , si )
I Zi = ⊥ or Zi = (~zi , ai , si )

I c is only (d⊥ − 2)-wise independent because of the linear
secret sharing code C.

I c = C(e)
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Statistical Completeness (4/6)

We can use the Chernoff-Hoeffding bound with limited
independence (CHwLI).

1. Let Xi for i = 1, . . . , t denote the conversations where:

I Xi = 1 if conversation i is an accepting conversation.
I Xi = 0 otherwise.

2. Define X =
∑t

i=1 Xi and µ(t) = t · (1− Pr[~z /∈ I n ]).

3. Let d⊥ = t · α for some α ∈ [0; 1].

4. Define the independence as `(t) = (t · α)− 2.
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Statistical Completeness (5/6)

CHwLI says that

Pr[|X − µ(t)| ≥ ε · µ(t)]

is negligible in t for any `(t) where ε is the same as in E .

1. Use CHwLI to argue that X lies between 1 and µ(t)− ε · µ(t)
with probability negligible in t.

2. Prove that |E − µ(t)| ≥ ε · µ(t).

16 / 22
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Statistical Completeness (6/6)

|E − µ(t)| = |(t · (1− Pr[~z /∈ I n ])− t · ε)− µ(t)|
= |(µ(t)− t · ε)− µ(t)|
= |−t · ε|
= t · ε
≥ µ(t) · ε
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Statistical Special Soundness (1/3)

Definition
Let (com, c ,Z) and (com′, c ′,Z ′) be two accepting conversations
for the same x where c 6= c ′. Furthermore, let Ext be a
probabilistic polynomial time knowledge extractor. The probability
that Ext on input (x , com, com′, c, c ′,Z,Z ′) can’t extract a
correct witness from the prover is negligible in the length of x .
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Statistical Special Soundness (2/3)

Proof.
Let com = (com1, . . . , comt) and Z = (Z1, . . . ,Zt).

1. Assume that PΣ can produce two accepting conversations
(com, c ,Z) and (com′, c ′,Z ′) with different challenges c 6= c ′

for (PΣ,VΣ).

2. Prove that there exists an index j such that (comj , cj ,Zj) and
(com′j , c

′
j ,Z ′j ) are two accepting conversations with different

challenges cj 6= c ′j for (P,V).

3. Since (P,V) satisfies statistical special soundness, we have
that (PΣ,VΣ) also satisfies this property.
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Statistical Special Soundness (3/3)

I At most t − E aborting
conversations.

I Zi = ⊥ for all i between
point (a) and (b).

I Z ′i = ⊥ for all i between
point (c) and (d).

I Make sure that
∆(c , c ′) > 2 · (t − E ) for
all c, c ′ ∈ C by choosing
d > 2 · (t − E ).

20 / 22



Introduction
A Statistically Secure Sigma Protocol

Proof of Theorem 4.2
Conclusion

Statistical Completeness
Statistical Special Soundness
Computational sHVZK

Statistical Special Soundness (3/3)

I At most t − E aborting
conversations.

I Zi = ⊥ for all i between
point (a) and (b).

I Z ′i = ⊥ for all i between
point (c) and (d).

I Make sure that
∆(c , c ′) > 2 · (t − E ) for
all c , c ′ ∈ C by choosing
d > 2 · (t − E ).

(a)

(d)

(b)

(c)

1 t

c

c0

Z

Z 0

6=

1 t

1 t

1 t

20 / 22



Introduction
A Statistically Secure Sigma Protocol

Proof of Theorem 4.2
Conclusion

Statistical Completeness
Statistical Special Soundness
Computational sHVZK

Statistical Special Soundness (3/3)

I At most t − E aborting
conversations.

I Zi = ⊥ for all i between
point (a) and (b).

I Z ′i = ⊥ for all i between
point (c) and (d).

I Make sure that
∆(c , c ′) > 2 · (t − E ) for
all c , c ′ ∈ C by choosing
d > 2 · (t − E ).

(a)

(d)

(b)

(c)

1 t

c

c0

Z

Z 0

6=

1 t

1 t

1 t

20 / 22



Introduction
A Statistically Secure Sigma Protocol

Proof of Theorem 4.2
Conclusion

Statistical Completeness
Statistical Special Soundness
Computational sHVZK

Computational sHVZK

Definition
There exists a probabilistic polynomial time simulator Sim, which
on input x and a random challenge c , outputs an accepting
conversation (com, c,Z) such that Sim(x , c) ∼c (PΣ(~w),VΣ)(x).

Proof.
Since (P,V) satisfies computational sHVZK, we have that
(PΣ,VΣ) also satisfies this property because sHVZK is invariant
under parallel composition.
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Conclusion

We have constructed a statistically secure sigma protocol that
satisfies:

commitub,ch commitcb,ph

Completeness Statistical Statistical
Special soundness Perfect Statistical

sHVZK Computational Perfect

and where we can base the security on:

I The prime factorization problem.

I The discrete logarithm problem.

I Lattice problems such as the shortest vector problem.
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