Statistically Secure Sigma Protocols with Abort

Anders Fog Bunzel

Aarhus University

September 16, 2016

Overview

Introduction

Sigma Protocols Security of Sigma Protocols

A Statistically Secure Sigma Protocol

Setup of Protocol 4.1 Protocol 4.1 Theorem 4.2 Theorem 3.1

Proof of Theorem 4.2

Statistical Completeness Statistical Special Soundness Computational sHVZK

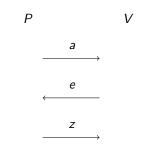
Conclusion

Sigma Protocols Security of Sigma Protocols

Sigma Protocols

P claims that he know some piece of information such as a secret key to a given public key.

- A sigma protocol implies:
 - an identification scheme.
 - a signature scheme.
 - ► a zero-knowledge protocol.
 - ▶ a commitment scheme.



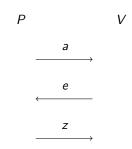
Sigma Protocols Security of Sigma Protocols

Sigma Protocols

P claims that he know some piece of information such as a secret key to a given public key.

A sigma protocol implies:

- an identification scheme.
- a signature scheme.
- a zero-knowledge protocol.
- ▶ a commitment scheme.



The security of a sigma protocol is based on the hardness of some computational problem such as:

- Prime factorization: Given $n = p \cdot q$, find the primes p and q.
- Discrete logarithm: Given $h = g^w \mod p$, find w.

- Given a lattice \hat{v} , find the shortest vector \vec{v} in \hat{v} .
- ▶ SVP reduces to the problem of finding *small* preimages.
- And hence, traditionally sigma protocols are insure when using lattice problems.

The security of a sigma protocol is based on the hardness of some computational problem such as:

- Prime factorization: Given $n = p \cdot q$, find the primes p and q.
- Discrete logarithm: Given $h = g^w \mod p$, find w.

- Given a lattice \hat{v} , find the shortest vector \vec{v} in \hat{v} .
- SVP reduces to the problem of finding *small* preimages.
- And hence, traditionally sigma protocols are insure when using lattice problems.

The security of a sigma protocol is based on the hardness of some computational problem such as:

- Prime factorization: Given $n = p \cdot q$, find the primes p and q.
- Discrete logarithm: Given $h = g^w \mod p$, find w.

- Given a lattice \hat{v} , find the shortest vector \vec{v} in \hat{v} .
- SVP reduces to the problem of finding *small* preimages.
- And hence, traditionally sigma protocols are insure when using lattice problems.

The security of a sigma protocol is based on the hardness of some computational problem such as:

- Prime factorization: Given $n = p \cdot q$, find the primes p and q.
- Discrete logarithm: Given $h = g^w \mod p$, find w.

- Given a lattice \hat{v} , find the shortest vector \vec{v} in \hat{v} .
- ► SVP reduces to the problem of finding *small* preimages.
- And hence, traditionally sigma protocols are insure when using lattice problems.

Setup of Protocol 4.1 Introduction A Statistically Secure Sigma Protocol Proof of Theorem 4.2

- A polynomial time bounded prover P and verifier V.
- ▶ An additive homomorphic function $f : (\mathbb{Z}^n, +) \mapsto (G, \circ)$ such
- ▶ The interval $I = [-(S \cdot B B); S \cdot B B]$ for $S, B \ge 1$.
- ▶ The witness $\vec{w} \in \mathbb{Z}^n$ for the problem x in the relation R where
- The commitment scheme commit with public key pk, which
 - Unconditional binding and computational hiding.
 - Computational binding and perfect hiding.
- The provers abort probability

Introduction Setup of Protocol 4.1 Proto of Theorem 4.2 Conclusion Theorem 3.1

- A polynomial time bounded prover P and verifier V.
- ▶ An additive homomorphic function $f : (\mathbb{Z}^n, +) \mapsto (G, \circ)$ such that $f(\vec{c} + \vec{d}) = f(\vec{c}) \circ f(\vec{d})$ for all $\vec{c}, \vec{d} \in \mathbb{Z}^n$.
- ▶ The interval $I = [-(S \cdot B B); S \cdot B B]$ for $S, B \ge 1$.
- ▶ The witness $\vec{w} \in \mathbb{Z}^n$ for the problem x in the relation R where $\|\vec{w}\|_{\infty} \leq B$, x = (f, y) and $y = f(\vec{w})$.
- The commitment scheme commit with public key pk, which comes in two flavors:
 - Unconditional binding and computational hiding.
 - Computational binding and perfect hiding.
- ► The provers abort probability $\Pr[\vec{z} \notin I^n] = 1 - \left(\frac{2 \cdot (S \cdot B - B) + 1}{2 \cdot (S \cdot B) + 1}\right)^n.$

Introduction Setup of Protocol 4.1 Proto of Theorem 4.2 Conclusion Theorem 3.1

- ► A polynomial time bounded prover P and verifier V.
- An additive homomorphic function f : (Zⁿ, +) → (G, ∘) such that f(c + d) = f(c) ∘ f(d) for all c, d ∈ Zⁿ.
- ▶ The interval $I = [-(S \cdot B B); S \cdot B B]$ for $S, B \ge 1$.
- ▶ The witness $\vec{w} \in \mathbb{Z}^n$ for the problem x in the relation R where $\|\vec{w}\|_{\infty} \leq B$, x = (f, y) and $y = f(\vec{w})$.
- The commitment scheme commit with public key pk, which comes in two flavors:
 - Unconditional binding and computational hiding.
 - Computational binding and perfect hiding.
- ► The provers abort probability $\Pr[\vec{z} \notin I^n] = 1 - \left(\frac{2 \cdot (S \cdot B - B) + 1}{2 \cdot (S \cdot B) + 1}\right)^n.$

- A polynomial time bounded prover P and verifier V.
- ▶ An additive homomorphic function $f : (\mathbb{Z}^n, +) \mapsto (G, \circ)$ such that $f(\vec{c} + \vec{d}) = f(\vec{c}) \circ f(\vec{d})$ for all $\vec{c}, \vec{d} \in \mathbb{Z}^n$.
- ▶ The interval $I = [-(S \cdot B B); S \cdot B B]$ for $S, B \ge 1$.
- ▶ The witness $\vec{w} \in \mathbb{Z}^n$ for the problem x in the relation R where $\|\vec{w}\|_{\infty} \leq B$, x = (f, y) and $y = f(\vec{w})$.
- The commitment scheme commit with public key pk, which comes in two flavors:
 - Unconditional binding and computational hiding.
 - Computational binding and perfect hiding.
- ► The provers abort probability $\Pr[\vec{z} \notin I^n] = 1 - \left(\frac{2 \cdot (S \cdot B - B) + 1}{2 \cdot (S \cdot B) + 1}\right)^n.$

Introduction Setup of Protocol 4.1 Proto of Theorem 4.2 Conclusion Theorem 3.1

- A polynomial time bounded prover P and verifier V.
- An additive homomorphic function f : (Zⁿ, +) → (G, ∘) such that f(c + d) = f(c) ∘ f(d) for all c, d ∈ Zⁿ.
- ▶ The interval $I = [-(S \cdot B B); S \cdot B B]$ for $S, B \ge 1$.
- ▶ The witness $\vec{w} \in \mathbb{Z}^n$ for the problem x in the relation R where $\|\vec{w}\|_{\infty} \leq B$, x = (f, y) and $y = f(\vec{w})$.
- The commitment scheme commit with public key pk, which comes in two flavors:
 - Unconditional binding and computational hiding.
 - Computational binding and perfect hiding.
- ► The provers abort probability $\Pr[\vec{z} \notin I^n] = 1 - \left(\frac{2 \cdot (S \cdot B - B) + 1}{2 \cdot (S \cdot B) + 1}\right)^n$

- A polynomial time bounded prover P and verifier V.
- ▶ An additive homomorphic function $f : (\mathbb{Z}^n, +) \mapsto (G, \circ)$ such that $f(\vec{c} + \vec{d}) = f(\vec{c}) \circ f(\vec{d})$ for all $\vec{c}, \vec{d} \in \mathbb{Z}^n$.
- ▶ The interval $I = [-(S \cdot B B); S \cdot B B]$ for $S, B \ge 1$.
- ▶ The witness $\vec{w} \in \mathbb{Z}^n$ for the problem x in the relation R where $\|\vec{w}\|_{\infty} \leq B$, x = (f, y) and $y = f(\vec{w})$.
- The commitment scheme commit with public key pk, which comes in two flavors:
 - Unconditional binding and computational hiding.
 - Computational binding and perfect hiding.
- ► The provers abort probability $\Pr[\vec{z} \notin I^n] = 1 - \left(\frac{2 \cdot (S \cdot B - B) + 1}{2 \cdot (S \cdot B) + 1}\right)^n.$

Introduction Setup of Protocol 4.1 A Statistically Secure Sigma Protocol Proof of Theorem 4.2

Setup of Protocol 4.1 (2/2)

▶ The limit $E = t \cdot (1 - \Pr[\vec{z} \notin I^n]) - t \cdot \epsilon$ where $\epsilon \in (0; 1]$.

• The linear secret sharing code $C = [n + l, k, d]_{\alpha}$ that satisfies:

• $(d^{\perp} - \ell - 1)$ -privacy where d^{\perp} is the minimum distance of the

- \triangleright $\ell = 1$ for small codewords
- ▶ a large k to increase the number of codewords

▶ an *E* such that $d > 2 \cdot (t - E)$ where $t = n + \ell$

Setup of Protocol 4.1 (2/2)

- ▶ The limit $E = t \cdot (1 \Pr[\vec{z} \notin I^n]) t \cdot \epsilon$ where $\epsilon \in (0; 1]$.
- The linear secret sharing code $C = [n + \ell, k, d]_q$ that satisfies:
 - (d[⊥] l 1)-privacy where d[⊥] is the minimum distance of the dual code C[⊥].

Massey's LSSS: To secret share $s \in \mathbb{F}_q^{\ell}$ we choose $c = (c_1, \ldots, c_{\ell}, c_{\ell+1}, \ldots, c_{\ell+n}) \in_R C$ such that $s = (c_1, \ldots, c_{\ell})$ where $(c_{\ell+1}, \ldots, c_{\ell+n})$ are the shares of s and $|C| = q^k$. And hence, for Protocol 4.1 we choose:

- $\ell = 1$ for small codewords
- ▶ a large k to increase the number of codewords

• an *E* such that $d > 2 \cdot (t - E)$ where $t = n + \ell$

Setup of Protocol 4.1 (2/2)

- ▶ The limit $E = t \cdot (1 \Pr[\vec{z} \notin I^n]) t \cdot \epsilon$ where $\epsilon \in (0; 1]$.
- The linear secret sharing code $C = [n + \ell, k, d]_q$ that satisfies:
 - (d[⊥] l 1)-privacy where d[⊥] is the minimum distance of the dual code C[⊥].

Massey's LSSS: To secret share $s \in \mathbb{F}_q^{\ell}$ we choose $c = (c_1, \ldots, c_{\ell}, c_{\ell+1}, \ldots, c_{\ell+n}) \in_R C$ such that $s = (c_1, \ldots, c_{\ell})$ where $(c_{\ell+1}, \ldots, c_{\ell+n})$ are the shares of s and $|C| = q^k$. And hence, for Protocol 4.1 we choose:

- $\ell = 1$ for small codewords
- ▶ a large k to increase the number of codewords

• an *E* such that $d > 2 \cdot (t - E)$ where $t = n + \ell$

Setup of Protocol 4.1 (2/2)

- ▶ The limit $E = t \cdot (1 \Pr[\vec{z} \notin I^n]) t \cdot \epsilon$ where $\epsilon \in (0; 1]$.
- The linear secret sharing code $C = [n + \ell, k, d]_q$ that satisfies:
 - (d[⊥] l 1)-privacy where d[⊥] is the minimum distance of the dual code C[⊥].

Massey's LSSS: To secret share $s \in \mathbb{F}_q^{\ell}$ we choose $c = (c_1, \ldots, c_{\ell}, c_{\ell+1}, \ldots, c_{\ell+n}) \in_R C$ such that $s = (c_1, \ldots, c_{\ell})$ where $(c_{\ell+1}, \ldots, c_{\ell+n})$ are the shares of s and $|C| = q^k$. And hence, for Protocol 4.1 we choose:

- $\ell = 1$ for small codewords
- ▶ a large k to increase the number of codewords
- an *E* such that $d > 2 \cdot (t E)$ where $t = n + \ell$

Protocol 4.1 (1/2)

Prover $P(\vec{w}, x)$ $\vec{r_i} \in_R \mathbb{Z}^n$ such that $\|\vec{r_i}\|_{\infty} \leq S \cdot B$ $a_i = f(\vec{r_i})$ $s_i \in_R \mathbb{Z}$ $com_i = \text{commit}_{pk}(a_i, s_i)$

$$\overbrace{e \in_{R} \{0,1\}^{k}}^{(\textit{com}_{1},\ldots,\textit{com}_{t})}$$

Verifier V(x)

Protocol 4.1 (2/2)

c = C(e) $\vec{z_i} = \vec{r_i} + c \cdot \vec{w}$ if $\vec{z_i} \in I^n$ then $\mathcal{Z}_i = (\vec{z_i}, a_i, s_i)$ else $\mathcal{Z}_i = \bot$

Theorem (4.2)

Let commit^{ub,ch} be an unconditional binding and computational hiding commitment scheme and commit^{cb,ph} a computational binding and perfect hiding commitment scheme.

Protocol 4.1 satisfies

	commit ^{ub,ch}	commit ^{cb,ph}
Completeness	Statistical	Statistical
Special soundness	Perfect	Statistical
sHVZK	Computational	Perfect

and hence is a statistically secure sigma protocol.

Introduction	
A Statistically Secure Sigma Protocol	
Proof of Theorem 4.2	Theorem 4.2
Conclusion	Theorem 3.1

Theorem (3.1)

Let commit^{ub,ch} be an unconditional binding and computational hiding commitment scheme and commit^{cb,ph} a computational binding and perfect hiding commitment scheme.

The general framework with abort (Protocol 3.1) satisfies

	commit ^{ub,ch}	commit ^{cb,ph}
Completeness	Aborts with prob. $\Pr[\vec{z} \notin I^n]$	
Special soundness	Perfect	Statistical
sHVZK	Computational	Perfect

Statistical Completeness Statistical Special Soundness Computational sHVZK

Proof of Theorem 4.2

Let (P,V) be the general framework with abort and let (P_{\Sigma},V_{\Sigma}) be Protocol 4.1.

Statistical Completeness Statistical Special Soundness Computational sHVZK

Statistical Completeness (1/6)

Definition

If P_{Σ} and V_{Σ} follows the protocol on input x and private input \vec{w} to P_{Σ} where $(\vec{w}, x) \in R$, then is the probability that V_{Σ} outputs reject negligible in t.

Statistical Completeness Statistical Special Soundness Computational sHVZK

Statistical Completeness (2/6)

Proof. Assume that P_{Σ} know a witness \vec{w} such that $(\vec{w}, x) \in R$.

We have to prove, that the following limit E implies that V_{Σ} only rejects P_{Σ} with probability negligible in t.

$$E = t \cdot (1 - \Pr[\vec{z} \notin I^n]) - t \cdot \epsilon$$

Statistical Completeness Statistical Special Soundness Computational sHVZK

Statistical Completeness (2/6)

Proof.

Assume that P_{Σ} know a witness \vec{w} such that $(\vec{w}, x) \in R$.

We have to prove, that the following limit E implies that V_{Σ} only rejects P_{Σ} with probability negligible in t.

$$E = t \cdot (1 - \Pr[\vec{z} \notin I^n]) - t \cdot \epsilon$$

Statistical Completeness Statistical Special Soundness Computational sHVZK

Statistical Completeness (3/6)

A conversation is on the form (com_i, c, Z_i) for i = 1, ..., t where:

- ► (com₁,..., com_t) and (Z₁,..., Z_t) are fully independent because of the used randomness.
 - $com_i = commit_{pk}(a_i, s_i)$

•
$$\mathcal{Z}_i = \perp$$
 or $\mathcal{Z}_i = (\vec{z_i}, a_i, s_i)$

c is only (d[⊥] − 2)-wise independent because of the linear secret sharing code C.

Statistical Completeness Statistical Special Soundness Computational sHVZK

Statistical Completeness (3/6)

A conversation is on the form (com_i, c, Z_i) for i = 1, ..., t where:

- ► (com₁,..., com_t) and (Z₁,..., Z_t) are fully independent because of the used randomness.
 - $com_i = commit_{pk}(a_i, s_i)$

•
$$\mathcal{Z}_i = \perp$$
 or $\mathcal{Z}_i = (\vec{z_i}, a_i, s_i)$

 c is only (d[⊥] − 2)-wise independent because of the linear secret sharing code C.

Statistical Completeness Statistical Special Soundness Computational sHVZK

Statistical Completeness (3/6)

A conversation is on the form (com_i, c, Z_i) for i = 1, ..., t where:

- ► (com₁,..., com_t) and (Z₁,..., Z_t) are fully independent because of the used randomness.
 - $com_i = commit_{pk}(a_i, s_i)$

•
$$\mathcal{Z}_i = \perp$$
 or $\mathcal{Z}_i = (\vec{z_i}, a_i, s_i)$

 c is only (d[⊥] − 2)-wise independent because of the linear secret sharing code C.

Statistical Completeness Statistical Special Soundness Computational sHVZK

Statistical Completeness (4/6)

- 1. Let X_i for i = 1, ..., t denote the conversations where:
 - $X_i = 1$ if conversation *i* is an accepting conversation.
 - $X_i = 0$ otherwise.
- 2. Define $X = \sum_{i=1}^{t} X_i$ and $\mu(t) = t \cdot (1 \Pr[\vec{z} \notin I^n])$.
- 3. Let $d^{\perp} = t \cdot \alpha$ for some $\alpha \in [0; 1]$.
- 4. Define the independence as $\ell(t) = (t \cdot \alpha) 2$.

Statistical Completeness Statistical Special Soundness Computational sHVZK

Statistical Completeness (4/6)

- 1. Let X_i for i = 1, ..., t denote the conversations where:
 - $X_i = 1$ if conversation *i* is an accepting conversation.
 - $X_i = 0$ otherwise.
- 2. Define $X = \sum_{i=1}^{t} X_i$ and $\mu(t) = t \cdot (1 \Pr[\vec{z} \notin I^n])$.
- 3. Let $d^{\perp} = t \cdot \alpha$ for some $\alpha \in [0; 1]$.
- 4. Define the independence as $\ell(t) = (t \cdot \alpha) 2$.

Statistical Completeness Statistical Special Soundness Computational sHVZK

Statistical Completeness (4/6)

- 1. Let X_i for i = 1, ..., t denote the conversations where:
 - $X_i = 1$ if conversation *i* is an accepting conversation.
 - $X_i = 0$ otherwise.
- 2. Define $X = \sum_{i=1}^{t} X_i$ and $\mu(t) = t \cdot (1 \Pr[\vec{z} \notin I^n])$.
- 3. Let $d^{\perp} = t \cdot \alpha$ for some $\alpha \in [0; 1]$.
- 4. Define the independence as $\ell(t) = (t \cdot \alpha) 2$.

Statistical Completeness Statistical Special Soundness Computational sHVZK

Statistical Completeness (4/6)

- 1. Let X_i for i = 1, ..., t denote the conversations where:
 - $X_i = 1$ if conversation *i* is an accepting conversation.
 - $X_i = 0$ otherwise.
- 2. Define $X = \sum_{i=1}^{t} X_i$ and $\mu(t) = t \cdot (1 \Pr[\vec{z} \notin I^n])$.
- 3. Let $d^{\perp} = t \cdot \alpha$ for some $\alpha \in [0; 1]$.
- 4. Define the independence as $\ell(t) = (t \cdot \alpha) 2$.

Statistical Completeness Statistical Special Soundness Computational sHVZK

Statistical Completeness (4/6)

- 1. Let X_i for i = 1, ..., t denote the conversations where:
 - $X_i = 1$ if conversation *i* is an accepting conversation.
 - $X_i = 0$ otherwise.
- 2. Define $X = \sum_{i=1}^{t} X_i$ and $\mu(t) = t \cdot (1 \Pr[\vec{z} \notin I^n])$.
- 3. Let $d^{\perp} = t \cdot \alpha$ for some $\alpha \in [0; 1]$.
- 4. Define the independence as $\ell(t) = (t \cdot \alpha) 2$.

Statistical Completeness Statistical Special Soundness Computational sHVZK

Statistical Completeness (5/6)

CHwLI says that

$$\Pr[|X - \mu(t)| \ge \epsilon \cdot \mu(t)]$$

is negligible in t for any $\ell(t)$ where ϵ is the same as in E.

- 1. Use CHwLl to argue that X lies between 1 and $\mu(t) \epsilon \cdot \mu(t)$ with probability negligible in t.
- 2. Prove that $|E \mu(t)| \ge \epsilon \cdot \mu(t)$.

Statistical Completeness Statistical Special Soundness Computational sHVZK

Statistical Completeness (5/6)

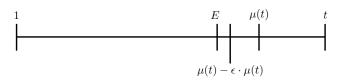
CHwLI says that

$$\Pr[|X - \mu(t)| \ge \epsilon \cdot \mu(t)]$$

is negligible in t for any $\ell(t)$ where ϵ is the same as in E.

1. Use CHwLI to argue that X lies between 1 and $\mu(t) - \epsilon \cdot \mu(t)$ with probability negligible in t.

2. Prove that $|E - \mu(t)| \ge \epsilon \cdot \mu(t)$.



Statistical Completeness Statistical Special Soundness Computational sHVZK

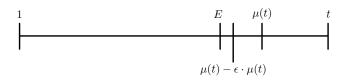
Statistical Completeness (5/6)

CHwLI says that

$$\Pr[|X - \mu(t)| \ge \epsilon \cdot \mu(t)]$$

is negligible in t for any $\ell(t)$ where ϵ is the same as in E.

- 1. Use CHwLI to argue that X lies between 1 and $\mu(t) \epsilon \cdot \mu(t)$ with probability negligible in t.
- 2. Prove that $|E \mu(t)| \ge \epsilon \cdot \mu(t)$.



Statistical Completeness Statistical Special Soundness Computational sHVZK

$$\begin{aligned} |\boldsymbol{E} - \boldsymbol{\mu}(\boldsymbol{t})| &= |(t \cdot (1 - \Pr[\vec{z} \notin I^n]) - t \cdot \boldsymbol{\epsilon}) - \boldsymbol{\mu}(t)| \\ &= |(\boldsymbol{\mu}(t) - t \cdot \boldsymbol{\epsilon}) - \boldsymbol{\mu}(t)| \\ &= |-t \cdot \boldsymbol{\epsilon}| \\ &= t \cdot \boldsymbol{\epsilon} \\ &\geq \boldsymbol{\mu}(t) \cdot \boldsymbol{\epsilon} \end{aligned}$$

Statistical Completeness Statistical Special Soundness Computational sHVZK

$$|E - \mu(t)| = |(t \cdot (1 - \Pr[\vec{z} \notin I^n]) - t \cdot \epsilon) - \mu(t)|$$

= $|(\mu(t) - t \cdot \epsilon) - \mu(t)|$
= $|-t \cdot \epsilon|$
= $t \cdot \epsilon$
 $\geq \mu(t) \cdot \epsilon$

Statistical Completeness Statistical Special Soundness Computational sHVZK

$$\begin{aligned} |E - \mu(t)| &= |(t \cdot (1 - \Pr[\vec{z} \notin I^n]) - t \cdot \epsilon) - \mu(t)| \\ &= |(\mu(t) - t \cdot \epsilon) - \mu(t)| \\ &= |-t \cdot \epsilon| \\ &= t \cdot \epsilon \\ &\geq \mu(t) \cdot \epsilon \end{aligned}$$

Statistical Completeness Statistical Special Soundness Computational sHVZK

$$\begin{aligned} |E - \mu(t)| &= |(t \cdot (1 - \Pr[\vec{z} \notin I^n]) - t \cdot \epsilon) - \mu(t)| \\ &= |(\mu(t) - t \cdot \epsilon) - \mu(t)| \\ &= |-t \cdot \epsilon| \\ &= t \cdot \epsilon \\ &\geq \mu(t) \cdot \epsilon \end{aligned}$$

Statistical Completeness Statistical Special Soundness Computational sHVZK

$$\begin{aligned} |E - \mu(t)| &= |(t \cdot (1 - \Pr[\vec{z} \notin I^n]) - t \cdot \epsilon) - \mu(t)| \\ &= |(\mu(t) - t \cdot \epsilon) - \mu(t)| \\ &= |-t \cdot \epsilon| \\ &= t \cdot \epsilon \\ &\geq \mu(t) \cdot \epsilon \end{aligned}$$

Statistical Completeness Statistical Special Soundness Computational sHVZK

$$\begin{aligned} |E - \mu(t)| &= |(t \cdot (1 - \Pr[\vec{z} \notin I^n]) - t \cdot \epsilon) - \mu(t)| \\ &= |(\mu(t) - t \cdot \epsilon) - \mu(t)| \\ &= |-t \cdot \epsilon| \\ &= t \cdot \epsilon \\ &\geq \mu(t) \cdot \epsilon \end{aligned}$$

Statistical Completeness Statistical Special Soundness Computational sHVZK

Statistical Special Soundness (1/3)

Definition

Let (com, c, \mathcal{Z}) and (com', c', \mathcal{Z}') be two accepting conversations for the same x where $c \neq c'$. Furthermore, let Ext be a probabilistic polynomial time knowledge extractor. The probability that Ext on input $(x, com, com', c, c', \mathcal{Z}, \mathcal{Z}')$ can't extract a correct witness from the prover is negligible in the length of x.

Statistical Special Soundness (2/3)

Proof. Let $com = (com_1, ..., com_t)$ and $\mathcal{Z} = (\mathcal{Z}_1, ..., \mathcal{Z}_t)$.

- 1. Assume that P_{Σ} can produce two accepting conversations (com, c, \mathcal{Z}) and (com', c', \mathcal{Z}') with different challenges $c \neq c'$ for (P_{Σ}, V_{Σ}) .
- 2. Prove that there exists an index j such that (com_j, c_j, Z_j) and (com'_j, c'_j, Z'_j) are two accepting conversations with different challenges $c_j \neq c'_j$ for (P,V).
- 3. Since (P, V) satisfies statistical special soundness, we have that (P_{Σ}, V_{Σ}) also satisfies this property.

Statistical Special Soundness (2/3)

Proof.

Let $com = (com_1, \ldots, com_t)$ and $\mathcal{Z} = (\mathcal{Z}_1, \ldots, \mathcal{Z}_t)$.

- 1. Assume that P_{Σ} can produce two accepting conversations (com, c, \mathcal{Z}) and (com', c', \mathcal{Z}') with different challenges $c \neq c'$ for (P_{Σ}, V_{Σ}) .
- 2. Prove that there exists an index j such that (com_j, c_j, Z_j) and (com'_j, c'_j, Z'_j) are two accepting conversations with different challenges $c_j \neq c'_j$ for (P,V).
- 3. Since (P, V) satisfies statistical special soundness, we have that (P_{Σ}, V_{Σ}) also satisfies this property.

Statistical Special Soundness (2/3)

Proof.

Let $com = (com_1, \ldots, com_t)$ and $\mathcal{Z} = (\mathcal{Z}_1, \ldots, \mathcal{Z}_t)$.

- 1. Assume that P_{Σ} can produce two accepting conversations (com, c, \mathcal{Z}) and (com', c', \mathcal{Z}') with different challenges $c \neq c'$ for (P_{Σ}, V_{Σ}) .
- 2. Prove that there exists an index j such that $(com_j, c_j, \mathcal{Z}_j)$ and $(com'_j, c'_j, \mathcal{Z}'_j)$ are two accepting conversations with different challenges $c_j \neq c'_i$ for (P, V).
- 3. Since (P, V) satisfies statistical special soundness, we have that (P_{Σ}, V_{Σ}) also satisfies this property.

Statistical Special Soundness (2/3)

Proof.

Let $com = (com_1, \ldots, com_t)$ and $\mathcal{Z} = (\mathcal{Z}_1, \ldots, \mathcal{Z}_t)$.

- 1. Assume that P_{Σ} can produce two accepting conversations (com, c, \mathcal{Z}) and (com', c', \mathcal{Z}') with different challenges $c \neq c'$ for (P_{Σ}, V_{Σ}) .
- 2. Prove that there exists an index j such that $(com_j, c_j, \mathcal{Z}_j)$ and $(com'_j, c'_j, \mathcal{Z}'_j)$ are two accepting conversations with different challenges $c_j \neq c'_i$ for (P, V).
- 3. Since (P, V) satisfies statistical special soundness, we have that (P_{Σ}, V_{Σ}) also satisfies this property.

Statistical Completeness Statistical Special Soundness Computational sHVZK

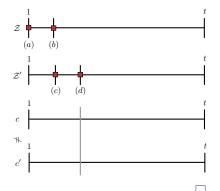
Statistical Special Soundness (3/3)

- At most t E aborting conversations.
- Z_i = ⊥ for all i between point (a) and (b).
- Z'_i = ⊥ for all i between point (c) and (d).
- Make sure that ∆(c, c') > 2 ⋅ (t − E) for all c, c' ∈ C by choosing d > 2 ⋅ (t − E).

Statistical Completeness Statistical Special Soundness Computational sHVZK

Statistical Special Soundness (3/3)

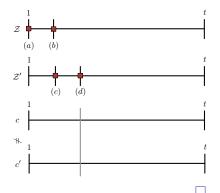
- At most t E aborting conversations.
- Z_i = ⊥ for all i between point (a) and (b).
- Z'_i = ⊥ for all i between point (c) and (d).
- Make sure that ∆(c, c') > 2 ⋅ (t − E) for all c, c' ∈ C by choosing d > 2 ⋅ (t − E).



Statistical Completeness Statistical Special Soundness Computational sHVZK

Statistical Special Soundness (3/3)

- At most t E aborting conversations.
- Z_i = ⊥ for all i between point (a) and (b).
- Z'_i = ⊥ for all i between point (c) and (d).
- Make sure that ∆(c, c') > 2 ⋅ (t − E) for all c, c' ∈ C by choosing d > 2 ⋅ (t − E).



Statistical Completeness Statistical Special Soundness Computational sHVZK

Computational sHVZK

Definition

There exists a probabilistic polynomial time simulator Sim, which on input x and a random challenge c, outputs an accepting conversation (com, c, \mathcal{Z}) such that $Sim(x, c) \sim^{c} (P_{\Sigma}(\vec{w}), V_{\Sigma})(x)$.

Proof.

Since (P, V) satisfies computational sHVZK, we have that (P_{Σ}, V_{Σ}) also satisfies this property because sHVZK is invariant under parallel composition.

Computational sHVZK

Definition

There exists a probabilistic polynomial time simulator Sim, which on input x and a random challenge c, outputs an accepting conversation (com, c, \mathcal{Z}) such that $Sim(x, c) \sim^{c} (P_{\Sigma}(\vec{w}), V_{\Sigma})(x)$.

Proof.

Since (P,V) satisfies computational sHVZK, we have that $(\mathsf{P}_\Sigma,\mathsf{V}_\Sigma)$ also satisfies this property because sHVZK is invariant under parallel composition.

Conclusion

We have constructed a *statistically secure sigma protocol* that satisfies:

	commit ^{ub,ch}	commit ^{cb,ph}
Completeness	Statistical	Statistical
Special soundness	Perfect	Statistical
sHVZK	Computational	Perfect

and where we can base the security on:

- The prime factorization problem.
- The discrete logarithm problem.
- Lattice problems such as the shortest vector problem.