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Abstract—One-time signature schemes based on one-way hash functions offer two advantages compared to digital signature
schemes based on trapdoor one-way functions such as RSA and ElGamal; signing and verification are very efficient and they are
quantum immune. In this paper we discuss four different one-time signature schemes of Merkle, Winternitz, Bleichenbacher and
Mauer. Common to all four one-time signature schemes are that they can be represented as trees or graphs, and we can therefore
analyze them according to efficiency, number of hash operation needed to generate the trees or graphs and finally size of keys and
signatures. We also prove that the four one-time signature schemes are secure against a chosen message attack.
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1 INTRODUCTION

S ECURITY of digital signature schemes used in practice
today are often based on the difficulty of factoring large

integers and computing discrete logarithms such as RSA [1]
and ElGamal [2]. These schemes have two main drawbacks;
they are not quantum immune and they doesn’t fit into
small devices with limited computing power.

One-time signature schemes based on one-way hash
functions deals with these two problems. A one-time sig-
nature scheme is a public key signature scheme with the
property that it can only sign one message per key pair. They
were first presented by Lamport [3] and later improved
by Merkle and Winternitz [4] where Winternitz’s one-time
signature scheme is a generalization of Merkle’s one-time
signature scheme. Later Bleichenbacher and Maurer [5],
[6] presented a generalization of the one-time signature
schemes based on directed acyclic graphs.

The main problem of one-time signature schemes is key
management, i.e. they can only sign one message per key
pair. Merkle [4] presented a solution to this problem with his
Merkle tree which authenticate multiple keys, but compared
to e.g. RSA, this solution is not sufficiently efficient.

The purpose of this paper is to analyze the four one-
time signature schemes we define in Section 3; the FMT-
seq signature scheme, the Winternitz signature scheme,
the Bleichenbacher-Mauer-Tree signature scheme and the
Bleichenbacher-Mauer-Graph signature scheme, according
to efficiency as defined in [5], the number of hash operations
used to generate the trees and the sizes of signatures and
keys.

The outline of the paper is as follows. Section 2 provides
the notations and definitions used in the rest of the paper,
Section 3 describe the four one-time signature schemes, and
in Section 4 we analyze them. In Section 5 we make a
comparison of the four one-time signature schemes, and
finally in the appendices are given a part of the proof
of Theorem 2 and a full description of the four one-time
signature schemes.

2 NOTATIONS AND DEFINITIONS

In this section we present some security notations and
definitions used in the rest of the paper.

2.1 Pseudo-random number generators (PRNG)

Randomness is essential in many aspects of cryptography;
from generation of keys to sampling randomness in various
protocols. The algorithm used for generating randomness is
called a pseudo-random number generator (PRNG).

A PRNG collects randomness from low-entropy input
streams such as key stroke and mouse movement (the seed)
that should be unpredictable from an adversary, and tries
to generate outputs that are indistinguishable from truly
random bit strings. A PRNG is secure if the advantage of
the adversary A in Game 1 is negligible in the length of the
bit string r.

Game 1 (PRNG-security). Let A be a probabilistic poly-
nomial time adversary and O an oracle. O sends a bit
string r to A which is either a truly random bit string or
generated by a PRNG. A then outputs 1 if he think r is
generated by the PRNG and otherwise he outputs 0. If
A guess correctly he wins the game.

2.2 Hash functions

A hash function H : {0, 1}∗ → {0, 1}k maps an arbitrary
size input x ∈ {0, 1}∗ to a fixed sized output y ∈ {0, 1}k,
also called the fingerprint or message digest of the input,
where the output size is defined by the security parameter
k.

Let X = {0, 1}∗ and Y = {0, 1}k, i.e. H : X → Y . We
say that the hash function H is secure if the following three
problems are hard to solve:

1) Preimage: Given a hash function H and an element
y ∈ Y it should be hard to compute its preimage
x ∈ X such that y = H(x). If preimage is hard to
solve, H is said to be one-way or preimage resistant.

2) Second preimage: Given a hash function H and an
element x ∈ X , it should be hard to find another
element x′ ∈ X such that H(x) = H(x′). If second
preimage is hard to solve, H is said to be second
preimage resistant.

3) Collision: Given a hash function H, it should be
hard to find two elements x, x′ ∈ X such that
H(x) = H(x′). If collision is hard to solve, H is said
to be collision resistant.
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Clearly, if we can do a second preimage attack, we can
also do a collision attack. Therefore, the best security is
obtained if the hash function is collision resistant.

By the ”birthday paradox” it’s possible to find a collision
in every 2k/2 evaluations of the hash function as described
in [7]. Therefore, with current state of the art, k = 160 is
preferable.

2.3 Digital signature schemes
A digital signature scheme Σ = (KGen,Sig,Vf) is a triple
with a key generation algorithm KGen, a signing algorithm
Sig and a verification algorithm Vf.

The key generation algorithm KGen is probalistic and
given the security parameter k as input, KGen returns the
key pair (sk, vk) where sk is the secret signing key and vk is
the public verification key (pk is sometimes used to denote
the public verification key instead of vk).

The signing algorithm Sig is either deterministic or
probabilistic and given the secret signing key sk and the
messagem, Sig returns the signature σ ofm. The verification
algorithm Vf is deterministic and given the message m and
the signature σ, Vf returns either true or false depending on
whether σ is a valid signature of m. It should always be true
that Vfvk(Sigsk(m),m) → true for (sk, vk) ← KGen(k) and
the message m.

The best achievable security for a digital signature
scheme Σ is against a chosen message attack (CMA), and
is defined by Game 2, where Σ is secure if the probability
that the adversaryAwins, i.e. he is able to forge a signature,
is negligible in the security parameter k.
Game 2 (CMA-security). LetA be a probabilistic polynomial

time adversary and O an oracle. Both are given the
security parameter k as input. First O runs (sk, vk) ←
KGen(k), where vk is given to A. Then A submit as
many messages m as he wants, and for each message
m he receive its signature σ = Sigsk(m) from O. At some
pointA outputs a message m0 and a signature σ0, where
m0 is not one of the messages O was asked to sign.
If Vfvk(σ0,m0) → true then A wins the game and has
forged the signature σ0 of the message m0.

2.3.1 One-time signature schemes (OTS)
A one-time signature (OTS) scheme is a digital signature
scheme that only can be used to sign one message per key
pair.

Two main advantages of an OTS scheme is that they
are based on one-way hash functions and the signing and
verification algorithms are very fast compared to public key
digital signature scheme such as RSA [1] and ElGamal [2].
On the other hand, there are certain drawbacks of a OTS
scheme; the limited number of signatures that can be signed
(using a Merkle signature scheme more than one message
can be signed using the same public verification key, see
section 2.5), the length of signatures and the size of keys.

The public verification keys in an OTS scheme can be
seen as a commitment to the secret signing keys, where it’s
often the case that vki = H(ski) for some i > 0 and a one-
way hash function H. The signer gives the committed values
vki to the verifier in an authenticated way and during veri-
fication he open the committed values by sending the secret
signing keys ski to the verifier who checks that vki = H(ski).

Fig. 1. The tree T = [C2C2] and its associated poset (T ∗,≤). The figure
is copied from [6].

2.4 Tree-based one-time signature schemes

This section is a recap of the notations and definitions given
in [6].

Let H : {0, 1}∗ → {0, 1}k be a hash function with
security parameter k and T = (V,E) be a tree with vertex
set V and edge set E, where the edges are directed from the
leafs to the root. The tree T is a Merkle tree (hash tree), i.e. a
vertex in the tree is the fingerprint of its children. We let the
leafs in the tree be the secret signing keys sk and the root be
the public verification key vk.

Let Cn denote the tree with a single path of n vertices,
i.e. a chain of n vertices. For two trees T1 and T2 we denote
[T1T2] as the tree with a new root and T1 and T2 as subtrees.
A subtree in this context is defined as a subtree whose
leafs are also the leafs in the original tree. We also define a
minimal cut set as the set of vertices which contains exactly
one vertex from every path between the leafs and the root.
We denote the set of minimal cut sets of T as T ∗.

A poset (partially ordered set) (T ∗,≤) is the set T ∗ with
the order relation ≤ where U ≤W for two minimal cut sets
U,W ∈ T ∗ if and only if every path from a vertex w ∈W to
the root contains a vertex u ∈ U (in words U is computable
from W ). We call (T ∗,≤) the associated poset of the tree T
and the maximal achievable size of an associated poset for a
tree with n vertices is denoted v(n). The associated poset of
a tree can be computed recursively as defined in Theorem
4.1 in [6]:
Theorem 1. The associated poset of the chain Cn with n

vertices is defined as

(C∗n,≤) ∼= Cn (1)

and for the tree [T1T2] with the root x and the two
subtrees T1 and T2 as

([T1T2]∗,≤) ∼= ((T ∗1 × T ∗2 ) ∪ {x},≤T ) (2)

where the order relation ≤T is defined by (i) {x} ≤ U
for all U ∈ (T ∗1 × T ∗2 ) and by (ii) (U,W ) ≤T (U ′,W ′)
if and only if both U ≤ U ′ in (T ∗1 ,≤) and W ≤ W ′ in
(T ∗2 ,≤).

E.g. let T = [C2C2] be the tree represented in Figure 1.
To compute the associated poset we have that T ∗1 = {b, d},
T ∗2 = {c, e} and (T ∗1 × T ∗2 ) = {{b, c}, {b, e}, {c, d}, {d, e}}.
As illustrated in the same figure, then {a} ≤ U for all U ∈
(T ∗1 ×T ∗2 ) as defined by (i), and e.g. {b, c} ≤T {b, e} because
{b} ≤ {b} in (T ∗1 ,≤) and {c} ≤ {e} in (T ∗2 ,≤) as defined
by (ii).

Two minimal cut sets U,W ∈ T ∗ are comparable if and
only if U ≤ W or W ≤ U and they are incomparable
otherwise. A subset A ⊆ T ∗ is called an antichain if all
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Fig. 2. The values of v(n) and µ(n) for trees of size n ≤ 30. The figure
is copied from [6].

pair of minimal cut sets (U,W ) ∈ A are incomparable. A
minimal cutset in the antichain A is also called a signature
pattern. The maximal cardinality of an antichain is denoted
w((T ∗,≤)), i.e. the size of the largest antichain in (T ∗,≤).
The maximal achievable size of an antichain in a tree with n
vertices is denoted µ(n).

If there exists a collision resistant mapping G from the
message space M to the antichain A, then we can use A
as an OTS scheme with signatures as the signature patterns
because A satisfy the following two requirements:

1) Signatures must be verifiable: The public verifica-
tion key vk (the root of the tree) is computable from
every signature pattern in A, i.e. every signatures
are verifiable.

2) It should not be possible to forge signatures: Every
signature pattern in A are incomparable, i.e. given a
signature (pattern) of a message it’s not possible to
compute a signature (pattern) of a different message
without inverting the used hash function.

Using the antichainA as the OTS scheme implies that we
can maximal sign a log2(w((T ∗,≤)))-bit message. The one-
time part is because if we sign multiple messages with the
same tree we would reveal more and more vertices (from the
signature patterns) and eventually we would have revealed
all the secret signing keys (all the leafs of the tree).

As stated in [6] the value v(n) can recursively be com-
puted using Equation 3 where v(n) = n for n ≤ 5, but the
value µ(n) can’t.

v(n) = 1 + max
1≤i≤n−2

{v(i) · v(n− i− 1)} (3)

Fortunately we have the relation in Equation 4 to esti-
mate the value of µ(n):

v(n) ≥ µ(n) ≥ v(n)

n
(4)

See Figure 2 for values of v(n) and µ(n) for trees of size
n ≤ 30.

2.4.1 An example
Let T = [C2C2] be the tree illustrated in Figure 1 with
its associated poset (T ∗,≤) (also illustrated in Figure 1),
where the secret signing keys are sk = (d, e) and the public
verification key is vk = a.

The antichain in T of maximal size is the set A =
{{b, e}, {c, d}} because the two signature patterns in A are
incomparable. I.e. {b, e} � {c, d} because the path from c to

the root a doesn’t contain the vertex e and {c, d} � {b, e}
because the path from b to the root a doesn’t contain the
vertex d.

Assume the message space is M = {0, 1} because
w((T ∗,≤)) = 2. Now we could define the mapping G :
M→ A for this OTS scheme as 0 7→ {b, e} and 1 7→ {c, d},
e.g. the signature of the message 1 is the signature pattern
{c, d}.

Notice that the public verification key vk is computable
from every signature pattern in A, i.e. the first requirement
for A as defined previously is satisfied. The same is true for
the second requirement, because given only the signature
{c, d} of the message 1, we have to invert the used hash
function (i.e. invert c = H(e) to get e) to compute the
signature {b, e} of the message 0.

If we had used T to sign both 0 and 1 we would had
revealed the two signature patterns {b, e} and {c, d} which
contains the entire secret key sk.

2.5 Merkle signature schemes (MSS)
As described in section 2.3.1 it’s only possible to sign one
message per key pair with an OTS scheme which is incon-
venient in most practical situation. One solution is to use a
Merkle signature scheme (MSS) as described in [8], which
is based on a Merkle tree and make it possible to use only
one public verification key (the root of the Merkle tree) to
verify multiple one-time signatures. Each leaf in the Merkle
tree then corresponds to one OTS scheme, i.e. we can sign
the same number of messages as leafs in the Merkle tree and
verify them all with a single public verification key, the root
(actually we use the public verification keys from the OTS
scheme to verify the message, and then use the root to verify
the public verification keys of the OTS scheme).

Assume H is a hash function and an OTS scheme such as
Merkle’s or Winternitz’s OTS scheme has been chosen. The
signer first selects H ≥ 2 which is the height of the Merkle
tree. Now the Merkle tree has 2H leafs which is the number
of messages that can be signed using this MSS. Therefore
the signer generates the OTS key pairs skiOTS and vkiOTS

for i = 1, 2, . . . , 2H . Each leaf in the Merkle tree is then
the fingerprint of all the public verification keys in vkiOTS

concatenated together. The Merkle tree is then constructed,
where each vertex is the fingerprint of its two children and
the root is published as the signers public verification key
vkMSS .

To signing a message m, the signer first compute the
fingerprint H(m) of the message, then he sign the finger-
print using the i’te OTS scheme located at the i’te leaf
which returns the signature σOTS . Next he computes the
authentication path Ai, where the h’te vertex in Ai is the
sibling to the h’te vertex in the path from the i’te leaf to
the root and h = 0, 1, . . . ,H is the vertex’s height in the
Merkle tree. The MSS signature of the message m is then
σMSS = (i, σOTS , vk

i
OTS , A

i).
Verification of the MSS signature σMSS consists of two

steps; first is the OTS scheme with the public verification
keys vkiOTS used to verify the signature σOTS of H(m). Then
is the authentication path Ai used to verify the public ver-
ification keys vkiOTS , by computing the root of the Merkle
tree and comparing it to the root previously received root
vkMSS from the signer.
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3 EFFICIENT ONE-TIME SIGNATURE SCHEMES

In this section we describe four MSS; the FMTseq sig-
nature scheme, the Winternitz signature scheme, the
Bleichenbacher-Mauer-Tree signature scheme and the
Bleichenbacher-Mauer-Graph signature scheme, where the
first three use OTS schemes that are based on trees (every
vertices have in-degree two at most) and the last one use a
OTS scheme based on a graph (vertices may have in-degree
greater than two).

3.1 The FMTseq signature scheme

The FMTseq signature scheme described in [9] is using
Merkle’s OTS scheme, which is described in [4], and [10] to
generate the authentication path Ai. For a full description of
the FMTseq signature scheme see Appendix B.

The secret signing keys used in Merkle’s OTS scheme
are generated by a secure PRNG. The PRNG needs to be
secure otherwise could an adversary break the PRNG and
then compute the secret signing keys. And if the adversary
somehow learn one secret signing key, a secure PRNG
prevent him from learning the other secret signing keys,
even though they are all computed from the same seed.

As stated in section 2.3 the best achievable security for a
signature scheme is against a chosen message attack (CMA),
which the FMTseq signature scheme is secure against:

Theorem 2. The FMTseq signature scheme is CMA-secure if
the used PRNG R is secure, the used hash function H
is collision resistant and Merkle’s OTS scheme is CMA-
secure.

Proof of Theorem 2: The prove given in [8], that
Lamport-Diffie’s OTS scheme is CMA-secure, can be used
without loss of generality for Merkle’s OTS scheme.

To prove that the FMTseq signature scheme is CMA-
secure, when the secure PRNG R is used to generated the
secret signing keys, we use a black-box reduction: Assume
we have two adversaries A′ and A. A′ is trying to break
R, i.e. tell whether the secret signing keys are truly random
bit strings or output from R, and A is trying to forge a
signature of the FMTseq signature scheme, i.e. a chosen
message attack (CMA). Our goal is to construct A′ such
that he succeed by letting him use A where we doesn’t care
about how the CMA is carried out, i.e. we treat A as a black
box (hence the name black-box reduction). The construction
of A′ is illustrated in Figure 3 where the secret signing keys
used in the FMTseq signature scheme are generated by the
oracle. A outputs 1 if the CMA succeed, i.e. he has forge
a signature of the FMTseq signature scheme, and otherwise
he outputs 0. Likewise, A′ outputs ”random” if he think the
secret signing keys are truly random bit strings, else if he
think they were generated by R he outputs ”PRNG”.

In Appendix A we have proved that the FMTseq signa-
ture scheme is CMA-secure when the secret signing keys are
truly random bit strings. Therefore, when A outputs 0, A′
know it’s because the secret signing keys are truly random
bit strings and he outputs ”random”. Likewise, when A
outputs 1, A′ know it’s because the secret signing keys are
generated by R and he outputs ”PRNG”. The above implies
that A′ can break R which is a contradiction because we
assumed it was secure.

FMTseq 
signature 
scheme

A’

A

0/1

random/PRNG

CMA ski
OTS

Oracle

or
ski

OTS = R(·)

ski
OTS 2R {0, 1}

Fig. 3. The black-box reduction used in the proof of Theorem 2.

So, by using a black-box reduction we have proved
that a secure PRNG implies CMA-security of the FMTseq
signature scheme when using the same PRNG to generate
the secret signing keys.

3.2 The Winternitz signature scheme

The Winternitz signature scheme is using Winternitz’s OTS
scheme which is described in [8]. Winternitz’s OTS scheme
use the parameterw ≥ 2 which defines the number of bits to
be signed simultaneously where [11] states that Winternitz’s
OTS scheme is most efficient when w = 2 is chosen. In the
rest of the paper we may write w in the equations but we
use w = 2 in all computations. See Appendix C for a full
description of the Winternitz signature scheme.

Because Winternitz’s OTS scheme is a generalization
of Merkle’s OTS scheme (where Merkle’s OTS scheme is
using w = 1), the proof of CMA-security for the Winternitz
signature scheme is almost identical to Theorem 2:
Theorem 3. The Winternitz signature scheme is CMA-secure

if the used PRNG R is secure, the used hash function
H is collision resistant and Winternitz’s OTS scheme is
CMA-secure.

Proof of Theorem 3: Winternitz’s OTS scheme is a
generalization of Merkle’s OTS scheme, i.e. the proof of
Theorem 2 can be used without loos of generality.

3.3 The Bleichenbacher-Mauer-Tree signature scheme

The Bleichenbacher-Mauer-Tree signature scheme is using
the trees described in section 2.4 as the OTS scheme.

Unlike the FMTseq and Winternitz signature scheme
where the tree representation of the used OTS easily can
be computed (i.e. we can easily compute the number of
secret signing keys needed and the number of hash op-
erations used to generate the tree), it’s not the case with
this signature scheme. The reason is because w((T ∗,≤)) for
a tree T defines the number of bits that can be signed,
and given a hash function H : {0, 1}∗ → {0, 1}k there
doesn’t exist a recursive method to compute a tree with
log2(w((T ∗,≤))) = k (remember we only sign the finger-
print of the message), i.e. we can’t recursively generate a
tree that can sign a k-bit message. Fortunately we can do
better than an exhaustive search over all trees as stated in
corollary 4.7 in [6]:
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Fig. 4. The table described in Corollary 1. The table is copied from [6].

TABLE 1
The estimated size of the trees described in section 2.4 for signing a

k-bit message.

k Lower bound Upper bound
128 310 330
160 388 409
256 621 643
512 1242 1267

Corollary 1. Let T be any tree with n vertices. If every
subtree of size s ≤ 11 in T is contained in the table
in Figure 4 then w((T ∗,≤)) = µ(n).

If we are not interested in the shape of the trees, it’s also
possible just to estimate the size of the tree for signing a k-bit
message: v(n) can recursively be computed using Equation
3, and using Equation 4 we have an upper and lower bound
on µ(n). E.g. for k = 160 we have that log2

(
v(409)
409

)
=

160 and log2(v(388)) = 160, i.e. a tree for signing a 160-bit
message has between 388 and 409 vertices. See Table 1 for
estimated size of trees for signing various values of k.

So, how does we sign and verify a message with this OTS
scheme? For signature generation the signer first compute
the antichain A of maximal size and then use a collision
resistant mapping G from the message space M to the
antichain A. The signature is then the signature pattern
mapped to by G. During verification the verifier first re-
construct the root of the tree with the revealed signature
pattern and then compare it with the previously received
root. If they are equal he know that the signature is valid.
See Appendix D for a full description of the Bleichenbacher-
Mauer-Tree signature scheme.

[12] proved that the OTS scheme using the trees de-
scribed in section 2.4 is CMA-secure, but with a different
notation; they have edges denoting the fingerprint and
vertices denoting the hash functions where our trees are
constructed in the opposite way. But fortunately as stated
in [12], these two constructions are equivalent and we can
therefore use their proof without loss of generality:

Theorem 4. The Bleichenbacher-Mauer-Tree signature
scheme is CMA-secure if the used PRNG R is secure,
the used hash function H is collision resistant and the
OTS scheme using the tree described in section 2.4 is
CMA-secure.

Proof of Theorem 4: The OTS scheme using the tree
described in section 2.4 is CMA-secure as stated in [12].
It then follows from the proof of Theorem 2 with the tree
described in section 2.4 as the used OTS scheme instead of

Fig. 5. The graph with w = 3, B = 2 blocks and a signature pattern of
size 9 indicated. The figure is copied from [5].

Merkle’s OTS scheme, that the Bleichenbacher-Mauer-Tree
signature scheme is CMA-secure.

3.4 The Bleichenbacher-Mauer-Graph signature
scheme
The Bleichenbacher-Mauer-Graph signature scheme is using
the graph described in section 6 in [5] as the OTS scheme.

Let H : {0, 1}∗ → {0, 1}k be the used hash function, i.e.
we want to sign a k-bit message. The graph then consist of
B = d k

log2(p)
e + dlogp

(
d k
log2(p)

e
)
e blocks as defined in [11]

where each block consists ofw·(w+1) vertices. As [5] we use
the value w = 3, which [11] also states is the most efficient
value for the scheme. In the rest of the paper we may write
w in the equations but we use w = 3 in all computations.
The value p in the definition of B depends on w and p = 51
for w = 3 as given in [11].

The first row of vertices in each block together with the
first w vertices are the secret signing keys, i.e. we have w ·
(B + 1) secret signing keys. The root of the graph is the
public verification key.

As illustrated in Figure 5 with B = 2 blocks and w = 3,
the blocks are connected in a specific way and the last row
of vertices in the last block are hashed together to generate
the public verification key.

For signature generation the signer first compute the
antichain A of maximal size in the graph and then he use
a collision resistant mapping G from the message space
M to the antichain A (just as described in section 2.4 for
trees). The signature is then equal the signature pattern
mapped to by G. In Figure 5 is a signature pattern of size
9 indicated. Now verification is carried out in the obvious
way, i.e. the verifier compute the root using the revealed
signature pattern and compare it with the previous received
root. If they are equal he know that the signature is valid.
See Appendix E for a full description of the Bleichenbacher-
Mauer-Graph signature scheme.
Theorem 5. The Bleichenbacher-Mauer-Graph signature

scheme is CMA-secure if the used PRNG R is secure, the
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used hash function H is collision resistant and the OTS
scheme using the graph described above is CMA-secure.

Proof of Theorem 5: The Bleichenbacher-Mauer-Graph
signature scheme is a special case of the Bleichenbacher-
Mauer-Tree signature scheme where the increased in-degree
of some vertex has no influence on the security, i.e. the proof
of Theorem 4 can be used without loos of generality.

4 ANALYSIS OF THE ONE-TIME SIGNATURE
SCHEMES

In this section we analyze the four OTS schemes used in
the four MSS schemes described in section 3 according to
|(T ∗,≤)| and w((T ∗,≤)) as all four OTS schemes can be
represented as trees (or three of the OTS schemes can be
represented as trees and the last one, the OTS scheme in the
Bleichenbacher-Mauer-Graph signature scheme, as a graph.
But as described in [5] our notations for trees in section 2.4
can also be used for graphs). We only analyze the used OTS
schemes because the Merkle tree used in each MSS scheme
are the same, i.e. we can ignore this part of the MSS scheme.

We also analyze the number of hash operations used,
the signature and key size and the efficiency of each OTS
scheme. Finally we describe the Java implementation we
used to get an idea about the shape of the trees described in
section 2.4 and to estimate the number of leafs in the trees,
which we need later in the computation of the number of
hash operations used to generate the trees and the size of
signatures and keys.

We use the following efficiency measure as defined in
[5]:

η(Σ) =
k

n+ 1
(5)

where k is the size of the message we want to sign and n is
the number of vertices in the tree representation of the OTS
scheme Σ. In [5] is an upper bound on the efficiency for a
tree T given as:

η(T ) ≤ γT ≈ 0.41614263726 (6)

where γT is called the tree efficiency constant and they
conjecture for a graph G that the graph efficiency constant
γG is:

η(G) ≤ γG =
1

2
(7)

4.1 The Java implementation
We implemented in Java an algorithm for computing the
associated poset (T ∗,≤) (using the recursive method de-
scribed in Theorem 1) and the largest antichain A of the
tree T . Before we describe the method used to compute the
largest antichain we first observe that the antichain is equal
the maximum independent set of the graph representing
the associated poset, because two vertices in the associated
poset graph are only connected if one is computable from
the other. We also remember that the complement of a
minimum vertex cover is equal a maximum independent
set and both problems are NP-complete. We are interested
in the minimum vertex cover of the graph representing the
associated poset because the Java library we used only had
a greedy method for computing the minimum vertex cover.

7

1 4

2 5

3 6

Fig. 6. The tree T = [C3C3].

{7}

{1,4}

{1,5}

{1,6}

{2,4}

{2,5}

{2,6}

{3,4}

{3,5}

{3,6}

Fig. 7. The associated poset (T ∗,≤) of the tree T = [C3C3] illustrated
in Figure 6. An arrow from e.g. the vertex {7} to the vertex {1, 4}
means that {7} is computable from {1, 4} (i.e. {7} ≤ {1, 4}). Our
implementation returned the antichain A = {{3, 5}, {2, 6}} of size 2,
but the largest antichain is A′ = {{3, 4}, {2, 5}, {1, 6}} of size 3 (i.e.
w((T ∗,≤)) = 3).

Because we used a greedy algorithm to compute the
vertex cover, we have found examples where our implemen-
tation doesn’t return the largest antichain in the poset. E.g.
the poset in Figure 7 we generated for the tree T = [C3C3] in
Figure 6 contains an antichain of size 3 (i.e. w((T ∗,≤)) = 3),
but the greedy algorithm returned an antichain of size 2.
Therefore, we believe that when our implementation find a
tree with n vertices and |(T ∗,≤)| = v(n), the tree also has
w((T ∗,≤)) = µ(n).

In Table 2 is the result of |(T ∗,≤)| and w((T ∗,≤)) using
our implementation for trees of size n ≤ 27. We where un-
able to compute the values for trees of size n > 27 because
our implementation had a very high time complexity.

4.2 The FMTseq signature scheme
Let TFMTseq be the tree representing the FMTseq signature
scheme with height H . TFMTseq has t = 2H leafs which is
also the number of k-bit messages that we can sign using
TFMTseq . Now each leafs in TFMTseq are the root of the
tree TMer representing Merkle’s OTS scheme with l = k +
dlog2(k)e leafs.
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TABLE 2
The result of |(T ∗,≤)| and w((T ∗,≤)) using our Java implementation
where T is the shape of the tree, n is the number of vertices and l is
the number of leafs in T . Green entries indicate that |(T ∗,≤)| = v(n)

and w((T ∗,≤)) = µ(n) according to Figure 2.

T n l |(T ∗,≤)| w((T ∗,≤))
C1 1 1 1 1
C2 2 1 2 1
C3 3 1 3 1
C4 4 1 4 1
[C2C2] 5 2 5 2
[C2C3] 6 2 7 2
[C3C3] 7 2 10 2
[C3C4] 8 2 13 3
[C4C4] 9 2 17 3
[C3[C2C3]] 10 3 22 5
[C3[C3C3]] 11 3 31 7
[C4[C3C3]] 12 3 41 8
[C4[C4C3]] 13 3 53 9
[[C3C3][C2C3]] 14 4 71 12
[[C3C3][C3C3]] 15 4 101 19
[[C3C3][C4C3]] 16 4 131 21
[[C3C3][C4C4]] 17 4 171 24
[[C3C4][C4C4]] 18 4 222 33
[[C3C3][[C3C3]C3] 19 5 311 51
[[C3C3][[C3C3]C4] 20 5 411 61
[[C3C3][[C3C4]C4] 21 5 531 75
[[C3C3][[C3C3][C2C3]]] 22 6 711 91
[[C3C3][[C3C3][C3C3]]] 23 6 1011 141
[[C3C3][[C3C4][C3C3]]] 24 6 1311 163
[[C3C3][[C4C4][C3C3]]] 25 6 1711 222
[[C3C3][[C4C4][C3C4]]] 26 6 2221 251
[[C3[[C3C3][[C3C3][C3C3]]]]] 27 7 3034 396

vk1

sk1

vk2

sk2

vk3

sk3

Fig. 8. The tree TMer = [[C2C2]C2] representing Merkle’s OTS
scheme for signing a k = 2-bit message where |(T ∗Mer,≤)| = 11 and
w((T ∗Mer,≤)) = 3.

Each TMer consist of nMer = 3 · l − 1 vertices when all
public verification keys used in the OTS are hashed into a
single public verification key (the root). Figure 8 illustrate
the tree for k = 2. The size of TFMTseq is then:

nFMTseq = t− 1 + t · nMer

= t− 1 + t · (3 · l − 1)

= 3 · l · t− 1 (8)

TABLE 3
The values of |(T ∗Mer,≤)| and w((T ∗Mer,≤)) using our Java

implementation where k is the size of the signed message, n is the
number of vertices and l is the number of leafs in TMer . Numbers

inside a parenthesis are respectively v(n) and µ(n) according to Figure
2.

k n l |(T ∗Mer,≤)| w((T ∗Mer,≤))
1 2 1 2 (2) 1 (1)
2 8 3 11 (13) 3 (3)
3 14 5 47 (71) 10 (14)
4 17 6 95 (171) 20 (29)
5 23 8 383 (1011) 70 (156)
6 26 9 767 (2228) 111 (326)
7 29 10 1535 (5372) 252 (732)

TABLE 4
Efficiency measure of Merkle’s OTS scheme.

k η(TMer)

128 0.316049383
160 0.317460317
256 0.323232323
512 0.327575176

4.2.1 Analysis of |(T ∗Mer,≤)|, w((T ∗Mer,≤)) and η(TMer)

First we analyze the values of |(T ∗Mer,≤)| and w((T ∗Mer,≤))
for the tree TMer . Because [6] only had computed the values
of |(T ∗,≤)| and w((T ∗,≤)) in their appendix for trees of
size n ≤ 30 and we where unable to compute the values for
trees of size n > 27, we are limited to trees of size n ≤ 30
as given in Table 3. It’s clear from the table that Merkle’s
OTS scheme is far away from being optimal according to
v(n) and µ(n) as defined in Figure 2. What the table also
show, is that e.g. the tree representing Merkle’s OTS scheme
for signing a 5-bit message has the potential to sign a
log2(w((T ∗Mer,≤))) = log2(70) ≈ 6-bit message.

Finally we compute the efficiency of TMer using Equa-
tion 5:

η(TMer) =
k

nMer + 1

=
k

(3 · l − 1) + 1

=
k

3 · l (9)

In Table 4 is the efficiency of Merkle’s OTS scheme
computed using Equation 9 with the definition of l and
various values of k. If we compute the limit of η(TMer) as
k goes to infinity using the definition of l, we get the upper
bound on the efficiency for Merkle’s OTS scheme:

lim
k→∞

η(TMer) = lim
k→∞

k

3 · l =
1

3
(10)

Again, Merkle’s OTS scheme is far away from being efficient
according to the tree efficiency constant given in Equation 6.

4.2.2 Analysis of the number of hash operations used and
the size of signatures and keys
To generate the tree TMer with n vertices and l leafs we
have to apply the hash function |HTMer

| = n − l times. In
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vk1

sk1

vk2

sk2

vk3

sk3

Fig. 9. The tree TWin = [[C4C4]C4] representing Winternitz’s OTS
scheme with w = 2 for signing a k = 2-bit message where |(T ∗Win,≤
)| = 69 and w((T ∗Win,≤)) = 12.

Merkle’s OTS scheme we have l secret signing keys and l
public verification keys where the public verification keys
are hashed into a single public verification key, i.e. the keys
are |sk| = k · l-bit and |vk| = k-bit because each key is k-bit.

As illustrated in Figure 8 we have to compute |HSig| = l
and |HVf | = l hash operations to sign and verify the
message respectively. But because we represent Merkle’s
OTS scheme as a tree we also have to include the number
of hash operations needed to generate the root, i.e. we set
|HVf | = l+ (l−1). Finally the signature consists of l vertices
where each vertex correspond to k-bit, i.e. the signature size
is |σ| = k · l-bit.

The described values for Merkle’s OTS scheme with
various values of k are given in Table 5.

4.3 The Winternitz signature scheme
Let TWIN be the tree representing the Winternitz signature
scheme with height H and t = 2H leafs, which is also
the number of k-bit messages that can be signed. Each
leaf in TWIN is the root of the tree TWin representing
Winternitz’s OTS scheme. TWin has l = l1 + l2 leafs where
l1 = d kw e and l2 = d blog2(l1)c+1+w

w e as defined in [8]. As
defined previously w is the number of bits to be signed
simultaneously.

Each TWin consists of nWin = l ·2w + l−1 vertices when
all public verification keys are hashed into a single public
verification key. Figure 9 illustrate the tree for k = 2. The
size of TWIN is then:

nWIN = t− 1 + t · nWin

= t− 1 + t · (l · 2w + l − 1) (11)

4.3.1 Analysis of |(T ∗Win,≤)|, w((T ∗Win,≤)) and η(TWin)

In Table 6 are the values of |(T ∗Win,≤)| andw((T ∗Win,≤)) for
trees of size n ≤ 30 computed. It’s clear that Winternitz’s
OTS is far away from being optimal according to v(n)
and µ(n) as defined in Figure 2. And just like Merkle’s
OTS scheme, the tree used to sign a 6-bit message has the

TABLE 6
The values of |(T ∗Win,≤)| and w((T ∗Win,≤)) using our Java

implementation where k is the size of the signed message, n is the
number of vertices and l is the number of leafs in TWin. Numbers

inside a parenthesis are respectively v(n) and µ(n) according to Figure
2.

k n l |(T ∗Win,≤)| w((T ∗Win,≤))
1, 2 14 3 69 (71) 12 (14)
3, 4 19 4 277 (311) 39 (53)
5, 6 24 5 1109 (1314) 155 (195)

TABLE 7
Efficiency measure of Winternitz’s OTS scheme with w = 2.

k η(TWin)

128 0.371014493
160 0.376470588
256 0.384962406
512 0.390839695

potential to sign a log2(w((T ∗Win,≤))) = log2(155) ≈ 7-bit
message.

Finally we use Equation 5 to compute the efficiency of
TWin:

η(TWin) =
k

nWin + 1

=
k

(l · 2w + l − 1) + 1

=
k

l · 2w + l
(12)

In Table 7 is the efficiency of Winternitz’s OTS scheme
computed using Equation 12 with the definition of l and
w = 2 for various values of k. The upper bound of η(TWin)
when using the definition of l and w = 2 is:

lim
k→∞

η(TWin) = lim
k→∞

k

l · 2w + l
=

2

5
(13)

The upper bound of Winternitz’s OTS scheme is a close
approximation of the tree efficiency constant as defined in
Equation 6, but the preferable sizes k = {128, 160, 256, 512}
in Table 7 are not.

4.3.2 Analysis of the number of hash operations used and
the size of signatures and keys

To generate the tree TWin with n vertices and l leafs we
have to apply the hash function |HTWin

| = n − l times.
Winternitz’s OTS scheme has l secret signing keys and l
public verification keys where each key is k-bit and the
public verification keys are hashed into a single public
verification key, i.e. the size of the keys are |sk| = k · l-bit
and |vk| = k-bit. In worst case we need |HSig| = (2w − 1) · l
and |HVf | = (2w − 1) · l hash operations to sign and verify
the message respectively. But just like Merkle’s OTS scheme
we also add the number of hash operations needed to
generate the root from the public verification keys, i.e. we
set |HVf | = (2w−1) · l+(l−1). Finally the signature consists
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TABLE 5
The number of hash operations used to generate the tree TMer (|HTMer

| = n− l), to sign (|HSig| = l) and verify (|HVf | = l + (l− 1)) a k-bit
message, the size of the secret signing keys (|sk| = k · l), the public verification keys (|vk| = k) and the signature (|σ| = k · l) in bits. n is the

number of vertices and l is the number of leafs in TMer .

k n l |HTMer
| |sk| |vk| |HSig| |σ| |HVf |

128 404 135 239 17280 128 135 17280 269
160 503 168 335 26880 160 168 26880 335
256 791 264 527 67584 256 264 67584 527
512 1562 521 1041 266752 512 521 266752 1041
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Fig. 10. The coordinate system used to estimate the number of leafs l
in TBMtree with n vertices using data from Table 2. The function of the
trendline is given in Equation 14.

of l vertices where each vertex correspond to k-bit, i.e. the
signature size is |σ| = k · l-bit.

The described values for Winternitz’s OTS scheme with
various values of k are given in Table 8.

4.4 The Bleichenbacher-Mauer-Tree signature scheme

Let TBMTREE be the tree representing the Bleichenbacher-
Mauer-Tree signature scheme as described in section 3.3
with height H and t = 2H leafs, where each leaf is the root
of the tree TBMtree representing the OTS scheme described
in section 2.4.

Later in the analyze we need the number of leafs in
TBMtree for k = {128, 160, 256, 512}, but because we where
unable to generate these trees we try to estimate the number
of leafs using data from Table 2. Plotting n and l from Table
2 in a coordinate system as illustrated in Figure 10 and
computing the trendline (the red linear regression line in
Figure 10) we get the following equation for computing the
number of leafs l in TBMtree with n vertices:

l =
125

546
· n+

149

351
(14)

It’s important to remember that Equation 14 is only a
roughly estimation because we have no ideas about the
behavior of the graph in Figure 10 after n = 27! But it’s the
best we can do, and later we will see that the data computed
using Equation 14 seems reliable.

vk

sk1 sk2

Fig. 11. The tree TBMtree = [C4C4] as described in section 2.4
for signing a k = 2-bit message where |(T ∗BMtree,≤)| = 17 and
w((T ∗BMtree,≤)) = 4.

TABLE 9
Efficiency measure of the trees described in section 2.4 using the

estimated values of n from Table 1.

k n η(TBMtree)

128 310 0.411575563
330 0.386706949

160 388 0.411311054
409 0.390243902

256 621 0.411575563
643 0.397515528

512 1242 0.411906677
1267 0.403785489

The size nBMtree of TBMtree for k = {128, 160, 256, 512}
is estimated in Table 1 as described previously. Using the re-
sult of our Java implementation in Table 2, the tree TBMtree

for k = 2 is illustrated in Figure 11. The size of TBMTREE

is then:

nBMTREE = t− 1 + t · nBMtree (15)

4.4.1 Analysis of |(T ∗BMtree,≤)|, w((T ∗BMtree,≤)) and
η(TBMtree)

As described previous the optimal values of |(T ∗BMtree,≤)|
and w((T ∗BMtree,≤)) for trees of size n ≤ 30 are given in
Figure 2, and in Table 2 have we computed the shapes of
the trees. The efficiency of TBMtree is defined by:

η(TBMtree) =
k

nBMtree + 1
(16)

In Table 9 is the efficiency of TBMtree computed using
Equation 16 with various values of k and the estimated val-
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TABLE 8
The number of hash operations used to generate the tree TWin (|HTWin

| = n− l), to sign (|HSig| = (2w − 1) · l) and verify
(|HVf | = (2w − 1) · l+ (l− 1)) a k-bit message in worst case, the size of the secret signing keys (|sk| = k · l), the public verification keys (|vk| = k)
and the signature (|σ| = k · l) in bits. w = 2 defines the number of bits to be signed simultaneously, n is the number of vertices and l is the number

of leafs in TWin.

k n l |HTWin
| |sk| |vk| |HSig| |σ| |HVf |

128 344 69 275 8832 128 207 8832 275
160 424 85 339 13600 160 255 13600 339
256 664 133 531 34048 256 399 34048 531
512 1309 262 1047 134144 512 786 134144 1047

ues of n from Table 1. The values are a close approximation
of the tree efficiency constant as defined in Equation 6.

4.4.2 Analysis of the number of hash operations used and
the size of signatures and keys
To generate the tree TBMtree with n vertices and l leafs we
have to apply the hash function |HTBMtree

| = n−l times. The
trees described in section 2.4 representing the OTS scheme
have l secret signing keys and one public verification key
where each key is k-bit, i.e. |sk| = k · l-bit and |vk| = k-bit.

As described in section 2.4 the only hash operations
needed during message signing are in the mapping G from
the message space to the antichain, i.e. |HSig| = |HG|. To
verify the message in worst case we need the number of
hash operation used to generate the tree minus one vertex,
otherwise would all the secret signing keys be revealed to
the verifier, i.e. |HVf | = n− l − 1. Finally, the signature size
in worst case is the size of the largest signature pattern in
the antichain where each vertex in the signature pattern is
k-bit. The size of a signature pattern in the largest antichain
of a tree is equal the number of leafs l, i.e. |σ| = k · l-bit.

The described values for TBMtree with various values of
k and the estimated values of n are given in Table 10.

4.5 The Bleichenbacher-Mauer-Graph signature
scheme
Let TBMGRAPH be the tree representation of the
Bleichenbacher-Mauer-Graph signature scheme as de-
scribed in section 3.4 with height H and t = 2H leafs, where
each leaf is the root of the graph GBMgraph representing
the OTS scheme described in same section. Each GBMgraph

consist of nBMgraph = (w·(w+1))·B+5 vertices whereB is
the number of blocks in the graph. The size of TBMGRAPH

is then:

nBMGRAPH = t− 1 + t · nBMgraph

= t− 1 + t · ((w · (w + 1)) ·B + 5) (17)

4.5.1 Analysis of |(G∗BMgraph,≤)|, w((G∗BMgraph,≤)) and
η(GBMgraph)

In Table 11 are the values of |(G∗BMgraph,≤)| and
w((G∗BMgraph,≤)) given for k between 1 and 5 usingw = 3.
We where unfortunately unable to compute the values for
k > 5. Notice that w((G∗BMgraph,≤)) = 58 compared to
µ(17) = 29 (as given in Figure 2) because GBMgraph is a
graph and not a tree.

TABLE 11
The values of |(G∗BMgraph,≤)| and w((G∗BMgraph,≤)) using our
Java implementation with w = 3 where k is the size of the signed

message, n is the number of vertices and B is the number of blocks in
GBMgraph.

k n B |(G∗BMgraph,≤)| w((G∗BMgraph,≤))
1-5 17 1 69 58

TABLE 12
Efficiency measure of the graph described in section 3.4 with w = 3.

k η(GBMgraph)

128 0.435374150
160 0.437158470
256 0.449122807
512 0.456327986

Using Equation 5 we can compute the efficiency of
GBMgraph:

η(GBMgraph) =
k

nBMgraph + 1

=
k

((w · (w + 1)) ·B + 5) + 1

=
k

(w · (w + 1)) ·B + 6
(18)

In Table 12 is the efficiency computed with various
values of k and w = 3. The upper bound of η(GBMgraph)
when using the definition of B and w = 3 is:

lim
k→∞

η(GBMgraph) = lim
k→∞

k

(w · (w + 1)) ·B + 6
≈ 0.472702 (19)

The upper bound is almost a close approximation of the
graph efficiency constant as defined in Equation 7, but the
preferable sizes k = {128, 160, 256, 512} are not.

4.5.2 Analysis of the number of hash operations used and
the size of signatures and keys
To generate the graph GBMgraph with n vertices and B
blocks we have to apply the hash function |HGBMgraph

| =
n − (B + 1) · w times where (B + 1) · w is the number of
”leafs” in the graph (the first row of vertices in each block
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TABLE 10
The number of hash operations used to generate the tree TBMtree (|HTBMtree

| = n− l), to sign (|HSig| = |HG|) and verify (|HVf | = n− l − 1) a
k-bit message in worst case, the size of the secret signing keys (|sk| = k · l), the public verification keys (|vk| = k) and the signature (|σ| = k · l) in
bits. |HG| is the number of hash operation used in the mapping G from the message space to the antichain, n is the estimated number of vertices

from Table 1 and l is the number of leafs in TBMtree where l is estimated using Equation 14.

k n l |HTBMtree
| |sk| |vk| |HSig| |σ| |HVf |

128 310 78 232 9984 128 |HG| 9984 231
330 83 247 10624 128 |HG| 10624 246

160 388 97 291 15520 160 |HG| 15520 290
409 102 307 16320 160 |HG| 16320 306

256 621 154 467 39424 256 |HG| 39424 466
643 160 483 40960 256 |HG| 40960 482

512 1242 308 934 157696 512 |HG| 157696 933
1267 314 953 160768 512 |HG| 160768 952

plus the w first vertices, see Figure 5 for an illustration with
w = 3). These ”leafs” are also the number of secret signing
keys and the root of the graph is the public verification key,
i.e. |sk| = k · (B + 1) · w-bit and |vk| = k-bit because each
key is k-bit.

Like TBMtree, the number of hash operations needed to
sign a message is the number of hash operations used in
the mapping G from the message space to the antichain,
i.e. |HSig| = |HG|. Likewise is the number of hash operation
used to verify the message in worst case equal the number
of hash operations needed to generate the graph, i.e. |HVf | =
B ∗ w2 + 2 · (w − 1) where B ∗ w2 is the number needed to
generate theB blocks and 2·(w−1) is the number needed to
generate the root. The size of a signature is likewise in worst
case the size of the largest signature pattern in the antichain
where each vertex in the signature pattern correspond to k-
bit. Because GBMgraph is a graph the number of vertices in
a signature pattern doesn’t depend on the number of ”leafs”
as TBMtree did. I.e. |σ| = w(SP) · k-bit where w(SP) is the
size of the largest signature pattern. E.g. forGBMgraph given
in Table 11 we have that w(SP) = 10.

The described values for TBMgraph with various values
of k are given in Table 13.

5 COMPARISON OF THE ONE-TIME SIGNATURE
SCHEMES

In this section we compare the results of the four OTS
schemes from the previous section. Where possible we only
compare the result for k = 160-bit because it’s the preferable
security parameter for a hash function with current state of
the art.

5.1 Comparison of |(T ∗,≤)|, w((T ∗,≤)) and η(T )

First we investigate the values of |(T ∗,≤)| and w((T ∗,≤))
for Merkle’s and Winternitz’s OTS scheme and compare it
with the OTS scheme using the trees described in section
2.4.

As previously described we were unable to generate
trees of size n > 27 and [6] has only computed the values
for trees of size n ≤ 30. Therefore, in Table 14 we only
have trees representing OTS schemes for signing a k = 5-bit
message. As given in the table, the tree TMer representing
Merkle’s OTS scheme for signing a k = 5-bit message has

TABLE 14
Comparison of |(T ∗,≤)| and w((T ∗,≤)) for trees with n vertices and l

leafs for signing a k = 5-bit message.

OTS n l |(T ∗,≤)| w((T ∗,≤))
TMer 503 8 383 70
TWin 424 5 1109 155
TBMtree 18 4 222 39

TABLE 15
Comparison of the efficiency measure η(T ) of the trees with n vertices

representing the OTS schemes for signing a k = 160-bit message.

OTS n η(T )

TMer 503 0.317460317
TWin 424 0.376470588
(TBMtree)n=⊥ 388 0.411311054
(TBMtree)n=> 409 0.390243902
GBMgraph 365 0.437158470

the potential to sign a log2(w((T ∗Mer,≤))) = log2(70) ≈ 6-
bit message. Likewise has the tree TWin representing Win-
ternitz’s OTS scheme the potential to sign a log2(w((T ∗Mer,≤
))) = log2(155) ≈ 7-bit message. I.e. trees representing
Winternitz’s OTS scheme have the biggest waist of bits that
could be signed. The tree TBMtree is only given in the table
for comparison with the optimal tree for signing a 5-bit
message.

Finally we compare the efficiency measure of the trees
representing the four OTS schemes in Table 15. Notice
that for TBMtree we have the tree representing the lower
((TBMtree)n=⊥) and upper ((TBMtree)n=>) bound on the
number of vertices as estimated in Table 1. We also remem-
ber from Equation 6 and Equation 7 that the tree and graph
efficiency constant are γT ≈ 0.41614263726 and γG = 1

2
respectively. As given in the table all the trees are far
away from the constant except from (TBMtree)n=⊥ which
is almost equal the constant. But because the number of
vertices for this tree is the estimated lower bound we can’t
be sure that it’s the correct tree for signing a k = 160-bit
message.
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TABLE 13
The number of hash operations used to generate the graph GBMgraph (|HGBMgraph

| = n− (B + 1) · w), to sign (|HSig| = |HG|) and verify
(|HVf | = (B ∗ w2 + 2 · (w − 1))) a k-bit message in worst case, the size of the secret signing keys (|sk| = k · (B + 1) · w), the public verification

keys (|vk| = k) and the signature (|σ| = w(SP) · k) in bits. |HG| is the number of hash operation used in the mapping G from the message space to
the antichain, w = 3 defines the size of each block, n is the number of vertices, l = (B + 1) · w is the number of ”leafs”, B is the number of blocks

and w(SP) is the size of the largest signature pattern in GBMgraph.

k n l |HGBMgraph
| |sk| |vk| |HSig| |σ| |HVf |

128 293 75 218 9600 128 |HG| w(SP) · 128 220
160 365 93 272 14880 160 |HG| w(SP) · 160 274
256 596 144 425 36864 256 |HG| w(SP) · 256 427
512 1121 282 839 144384 512 |HG| w(SP) · 512 841

5.1.1 Comparison of the number of hash operations used
and the size of signatures and keys
In Table 16 we compare the trees representing the four
OTS schemes according to the number of hash operations
used and the size of signatures and keys. For TBMtree

we have three versions, two as described previously and
the last one (TBMtree)

20∗
k=8, as the tree (TBMtree)k=8 =

[[C3C3][[C4C4][C3C4]]] from Table 2 for signing a 8-bit mes-
sage generated 20 times because 8 · 20 = 160-bit. I.e. the
160-bit message is divided into 8-bit blocks and each block
is signed using one of the 20 trees.

As given in Table 16 (TBMtree)
20∗
k=8 has way shorter sig-

nature and secret signing keys compared to the other but it
come with the cost of the high number of vertices in the tree
which implies that the number of hash operations needed
to generate the tree and verify messages are high. We also
observe in the table that TMer has almost twice the size of
signature and secret signing keys compared to the others.
That (TBMtree)n=⊥ and (TBMtree)n=> use fewest vertices
of the trees in the table and thereby use fewest number of
hash operations to generate the tree and to verify a message
is anticipated because we have previously described that
these type of trees are the most efficient one according to
the number of bits per vertex that can be signed (as defined
in Equation 5).

Finally we can conclude from the table that if the size of
signatures and keys matters we should use a tree for signing
few bits multiple times such as (TBMtree)

20∗
k=8. Otherwise

if we want a small tree, i.e. we want few hash operations
to generate the tree and verify messages we should use
GBMgraph but only if |HG| is cheap. Else we have to use
TWin which also have short signatures and keys because of
its few leafs that results from the value w which defines the
number of bits to be signed simultaneously. [11] also states
that the Winternitz signature scheme is more efficient than
the Bleichenbacher-Mauer-Graph signature scheme because
|HG| isn’t cheap.

6 CONCLUSION

In this paper we described and analyzed the four one-
time signature schemes: the FMTseq signature scheme, the
Winternitz signature scheme, the Bleichenbacher-Mauer-
Tree signature scheme and the Bleichenbacher-Mauer-Graph
signature scheme. Additionally we also proved that the four
one-time signature schemes are CMA-secure.

The analysis shows that the trees and graphs proposed
by Bleichenbacher and Mauer are the most efficient ones

and with the fewest number of hash operations needed to
verify messages and to generate the trees and graphs, but
only if there exists an efficient mapping from the message
space to the antichain. Otherwise is the Winternitz signature
scheme the best candidate as other papers also consider as
the best choice in practice.

APPENDIX A
PART OF THE PROOF OF THEOREM 2
Assume for the sake of contradiction that an adversary F
with advantage εF can forge a FMTseq signature. We can
then use F to prove that the FMTseq signature scheme is
CMA-secure when the secret signing keys are truly random
bit strings, by proving that an adversary A using F can
either forge a signature σOTS of Merkle’s OTS scheme or
find a collision for the hash function H : {0, 1}∗ → {0, 1}k.
But because we have assumed that Merkle’s OTS scheme is
CMA-secure and the hash function is collision resistant, we
have a contradiction.

Section 8.3 in [8] was used as template for the following
construction of the proof.

The algorithm:

1) Let O be an oracle that given a message returns a
signature σOTS using Merkle’s OTS scheme. O is
given the security parameter k as input:

a) Generates a key pair by running the prob-
abilistic algorithm KGen: (skMer, vkMer) ←
KGen(k). O sends vkMer to A.

2) The adversaryA is given the heightH of the Merkle
tree and the security parameter k as input:

a) Selects a hash function H : {0, 1}∗ → {0, 1}k.
b) Selects an index c ∈R {1, 2, . . . , 2H}.
c) Generates 2H key pairs by running the prob-

abilistic algorithm KGen: (skiOTS , vk
i
OTS) ←

KGen(k), where i = 1, 2, . . . , 2H is the sig-
nature number and each key pair is used to
sign and verify one message.

d) Update the c’te public verification key to the
one received from O: vkcMSS = vkMer .

e) Sends the set of public keys vkiOTS , the
height H and the hash function H to the
forger F .

3) The following exchange of messages betweenA and
F occurs at most 2H times:
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TABLE 16
Comparison of the trees with n vertices and l leafs representing the OTS schemes for signing a k = 160-bit message. Green and red entries

represent the lowest and highest value respectively in that column.

OTS n l |HT | |sk| |vk| |HSig| |σ| |HVf |
TMer 503 135 335 26880 160 168 26880 335
TWin 424 85 339 13600 160 255 13600 339
(TBMtree)n=⊥ 388 97 291 15520 160 |HG| 15520 290
(TBMtree)n=> 409 102 307 16320 160 |HG| 16320 306
(TBMtree)

20∗
k=8 520 120 400 960 160 |HG| 960 380

GBMgraph 365 93 272 14880 160 |HG| w(SP) · 160 274

a) F sends a message M and a signature num-
ber q to A where 1 ≤ q ≤ 2H .

b) If q = c then A ask the oracle O for a
signature of M . O computes the signature by
σOTS = SigskMer

(M) and sends it to A. A
then forward σOTS to F .

c) Else if q 6= c then A computes the signature
ofM using Merkle’s OTS scheme by σOTS =
SigskqMSS

(m) and sends it to F .
d) With εF the forger F returns a forged sig-

nature of the FMTseq signature scheme, i.e.
he returns to A a message M 6= M and
a signature σMSS = (s, σOTS , vk

s
MSS , A

s)
where s is the signature number and
VfvkMSS

(M,σMSS) → true for the the root
vkMSS of the Merkle tree.

4) The adversary A:

a) Compares the received signature σMSS

of M with the signature σMSS =
(s, σOTS , vk

s
MSS , A

s) of M .
b) If (vksMSS , A

s) 6= (vksMSS , A
s) then A re-

turns a collision for the hash function H.
c) Else if (vksMSS , A

s) = (vksMSS , A
s) and s = c

thenA returns a forged signature of Merkle’s
OTS scheme.

A.1 Explanation of 4.b (collision)

A construct the path Bs = (Bs
0, B

s
1, . . . , B

s
H) where Bs

0 =
H(vksMSS) (the s’te leaf), Bs

H = vkMSS (the root) and
Bs

i+1 = H(Bs
i ‖As

i ) for i = 0, 1, . . . ,H . Likewise is the path
Bs constructed by using As.

Assume Bs 6= Bs: This is true when vksMSS 6= vksMSS .
Because Bs

H = Bs
H = vkMSS there exists an index 0 ≤ i <

H such that Bs
i+1 = Bs

i+1 and Bs
i 6= Bs

i which is a collision.
Assume Bs = Bs: Then Bs

0 = Bs
0 . If vksMSS 6= vksMSS

then a collision is found. Else if vksMSS = vksMSS then As 6=
As and As

i 6= As
i for some index 0 ≤ i < H , which is a

collision for Bs
i+1 = H(Bs

i ‖As
i ) = H(Bs

i ‖As
i ) = Bs

i+1.

A.2 Explanation of 4.c (forgery)

When s = c then vksMSS = vksMSS = vkcMSS = vkMer

and σOTS is a valid Merkle one-time signature for M , i.e.
VfvkMer

(M,σOTS)→ true.

A.3 A’s advantage
Either A find a collision for H or he forge a signature for
Merkle’s OTS scheme. A’s probability εCR for returning a
collision is at least εF . Likewise is A’s probability εOTS

for returning a forged signature at least 1
2H · εF because

it depends on whether s = c or not where Pr[s = c] = 1
2H .

APPENDIX B
THE FMTSEQ SIGNATURE SCHEME

The FMTseq signature scheme is a MMS using Merkle’s
OTS scheme. The following is a recap of the FMTseq
signature scheme from [9] with a slightly different notation:

Key generation:

1) Choose a secure PRNGR, a secret key SK ∈ {0, 1}k
(the seed of R) and a collision resistant hash func-
tion H : {0, 1}∗ → {0, 1}l.

2) Construct a Merkle tree of height H :

a) Generate t = l + log2(l) secret signing keys
for each OTS scheme by using R, such that
skij = R(SK, j, i) where j = 1, 2, . . . , t and
i = 1, 2, . . . , 2H .

b) Use the hash function H to compute the t
public verification keys by vkij = H(skij).

c) Denote the i’te set of secret signing keys and
public verification keys as skiOTS and vkiOTS

respectively.
d) Commit to the i’te public verification key by

computing plci = H(vki1‖vki2‖ . . . ‖vkit). plci
is then the i’te leaf in the Merkle tree.

3) Publish the root of the Merkle tree, which we denote
vkMSS , and set the signature number i = 0.

Signing: The input is a message M and the output is a
signature σMSS of M .

1) Increment i.
2) Sign the fingerprint of the message with Merkle’s

OTS scheme:

a) Calculate the number of 0-bits in H(M) and
denote it C . Let d = H(M)‖C .

b) Regenerate the i’te secret signing keys skiOTS

with the PRNG R.
c) Compute the signature: σOTS =

SigskiOTS
(M) = {skij ∈ skiOTS |dj =

1} ∪ {vkij ∈ vkiOTS |dj = 0}.
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3) Create the authentication path from the i’te leaf to
the root using [10] and denote it Ai.

4) Output the signature σMSS = (i, σOTS , vk
i
OTS , A

i).

Verifying: The input is a message M and a signature σMSS

and the output is a boolean decision true or false.

1) Verify the message with Merkle’s OTS scheme:

a) Calculate the number of 0-bits in H(M) and
denote it C . Let d = H(M)‖C .

b) Let J = {j|dj = 1} be indices and denote the
elements in σOTS as sj for j = 1, 2, . . . , t.

c) Update the elements in σOTS corresponding
to the secret signing keys by sj = H(sj) for
all j ∈ J .

d) Verify the signature by checking that sj =
vkij for j = 1, 2, . . . , t where vkij ∈ vkiOTS .

2) Compute plc = H(s1‖s2‖ . . . ‖st).
3) Compute the root of the Merkle tree vkMSS using

plc and the received authentication path Ai.
4) If vkMSS = vkMSS then the signature is valid and

we output true, otherwise it’s invalid and we output
false.

APPENDIX C
THE WINTERNITZ SIGNATURE SCHEME

The Winternitz signature scheme is a MMS using
Winternitz’s OTS scheme. The following is a recap of
the Winternitz signature scheme where we use the
definition of Winternitz’s OTS scheme from [8].

Key generation:

1) Choose a secure PRNGR, a secret key SK ∈ {0, 1}k
(the seed of R) and a collision resistant hash func-
tion H : {0, 1}∗ → {0, 1}l.

2) Construct a Merkle tree of height H :

a) Define t = t1 + t2 where t1 = d l
w e and

t2 = d blog2(t1)c+1+w
w e. The value w defines

the number of bits to be signed simultane-
ously.

b) Generate the t secret signing keys for each
OTS scheme by using R, such that skij =
R(SK, j, i) where j = 1, 2, . . . , t and i =
1, 2, . . . , 2H .

c) Use the hash function H to compute the t
public verification keys by applying it 2w−1
times: vkij = H2w−1(skij).

d) Denote the i’te set of secret signing keys and
public verification keys as skiOTS and vkiOTS

respectively.
e) Commit to the i’te public verification key by

computing plci = H(vki1‖vki2‖ . . . ‖vkit). plci
is then the i’te leaf in the Merkle tree.

3) Publish the root of the Merkle tree, which we denote
vkMSS , and set the signature number i = 0.

Signing: The input is a message M and the output is a
signature σMSS of M .

1) Increment i.
2) Sign the fingerprint of the message with Winter-

nitz’s OTS scheme:

a) Divide d = H(M) into t1 bit strings of
lengthw (we prepend with 0’s if needed) and
denote them dt, dt−1, . . . , dt−t1+1.

b) Compute the check sum C =∑t
u=t−t1+1(2t − du).

c) Divide the binary representation of C into t2
bit strings of lengthw (we prepend with 0’s if
needed) and denote them dt2 , dt2−1, . . . , d1.

d) Regenerate the i’te secret signing keys skiOTS

with the PRNG R.
e) Compute the signature:

σOTS = SigskiOTS
(M) =

{Hdt(skt), . . . ,H
d2(sk2),Hd1(sk1)}.

3) Create the authentication path from the i’te leaf to
the root and denote it Ai.

4) Output the signature σMSS = (i, σOTS , vk
i
OTS , A

i).

Verifying: The input is a message M and a signature σMSS

and the output is a boolean decision true or false.

1) Verify the signature with Winternitz’s OTS scheme:

a) The bit strings dt, dt−1, . . . , d1 are computed
as in the signing algorithm.

b) Denote the elements in σOTS as sj for j =
1, 2, . . . , t.

c) Verify the signature σOTS by checking that
H2w−1−dj (sj) = vkij for j = 1, 2, . . . , t where
vkij ∈ vkiOTS .

2) Compute plc = H(s1‖s2‖ . . . ‖st).
3) Compute the root of the Merkle tree vkMSS using

plc and the received authentication path Ai.
4) If vkMSS = vkMSS then the signature is valid and

we output true, otherwise it’s invalid and we output
false.

APPENDIX D
THE BLEICHENBACHER-MAUER-TREE SIGNATURE
SCHEME

The Bleichenbacher-Mauer-Tree signature scheme is a MMS
using the tree described in section 2.4 as the OTS scheme.
The following is a recap of the Bleichenbacher-Mauer-Tree
signature scheme:

Key generation:

1) Choose a secure PRNGR, a secret key SK ∈ {0, 1}k
(the seed of R) and a collision resistant hash func-
tion H : {0, 1}∗ → {0, 1}l.

2) Construct a Merkle tree of height H :

a) Generate t secret signing keys for each
OTS scheme by using R, such that skij =
R(SK, j, i) where j = 1, 2, . . . , t and i =
1, 2, . . . , 2H .

b) Use the hash function H to generate the i’te
public verification key vki. I.e. we have gen-
erated the i’te tree Ti as described in section
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2.4 with t secret signing keys as the leafs
and the root as the public verification key.
Ti represent the OTS scheme for signing a
l-bit message, i.e. log2(w((T ∗,≤))) = l, and
the root vki in Ti is the i’te leaf in the Merkle
tree.

c) Denote the i’te set of secret signing keys as
skiOTS .

3) Publish the root of the Merkle tree, which we denote
vkMSS , and set the signature number i = 0.

Signing: The input is a message M and the output is a
signature σMSS of M .

1) Increment i.
2) Sign the fingerprint d = H(M) with the tree Ti:

a) Regenerate the i’te secret signing keys skiOTS

(with the PRNG R) and the tree Ti.
b) Let A be the largest antichain in Ti and G :
M → A be a mapping from the message
spaceM to the antichain A.

c) Compute the signature σOTS = G(m), i.e.
the signature is equal one of the signature
patterns in A of size t.

3) Create the authentication path from the i’te leaf to
the root and denote it Ai.

4) Output the signature σMSS = (i, σOTS , vk
i, Ai).

Verifying: The input is a message M and a signature σMSS

and the output is a boolean decision true or false.

1) Verify the message with the tree Ti:

a) Generate the tree Ti using the signature
σOTS and denote the root vk.

b) Verify the signature by checking that vk =
vki.

2) Compute the root of the Merkle tree vkMSS using
vk and the received authentication path Ai.

3) If vkMSS = vkMSS then the signature is valid and
we output true, otherwise it’s invalid and we output
false.

APPENDIX E
THE BLEICHENBACHER-MAUER-GRAPH SIGNA-
TURE SCHEME

The Bleichenbacher-Mauer-Tree signature scheme is a MMS
using the graph described in section 3.4 as the OTS scheme.
The following is a recap of the Bleichenbacher-Mauer-Graph
signature scheme:

Key generation:

1) Choose a secure PRNGR, a secret key SK ∈ {0, 1}k
(the seed of R) and a collision resistant hash func-
tion H : {0, 1}∗ → {0, 1}l.

2) Construct a Merkle tree of height H :

a) Define B = d l
log2(p)

e + dlogp

(
d l
log2(p)

e
)
e

where p depend on the value w which define
the size of the blocks.

b) Generate t = w · (B + 1) secret signing keys
for each OTS scheme by using R, such that
skij = R(SK, j, i) where j = 1, 2, . . . , t and
i = 1, 2, . . . , 2H .

c) Use the hash function H to generate the
graph Gi as described in section 3.4 and
denote the root as the i’te public verification
key vki. The graph consists of B blocks and
the t ”leafs” correspond to the secret signing
keys. Gi represent the OTS scheme for sign-
ing a l-bit message and the root vki in Gi is
the i’te leaf in the Merkle tree.

d) Denote the i’te set of secret signing keys as
skiOTS .

3) Publish the root of the Merkle tree, which we denote
vkMSS , and set the signature number i = 0.

Signing: The input is a message M and the output is a
signature σMSS of M .

1) Increment i.
2) Sign the fingerprint d = H(M) with the graph Gi:

a) Regenerate the i’te secret signing keys skiOTS

(with the PRNG R) and the graph Gi.
b) Let A be the largest antichain in Gi and G :
M → A be a mapping from the message
spaceM to the antichain A.

c) Compute the signature σOTS = G(m) such
that the size of the signature pattern mapped
to is l, i.e. the signature is equal one of the
signature patterns in A of size l.

3) Create the authentication path from the i’te leaf to
the root and denote it Ai.

4) Output the signature σMSS = (i, σOTS , vk
i, Ai).

Verifying: The input is a message M and a signature σMSS

and the output is a boolean decision true or false.

1) Verify the message with the graph Gi:

a) Generate the graph Gi using the vertices in
the signature σOTS and denote the root vk.

b) Verify the signature σOTS by checking that
vk = vki.

2) Compute the root of the Merkle tree vkMSS using
vk and the received authentication path Ai.

3) If vkMSS = vkMSS then the signature is valid and
we output true, otherwise it’s invalid and we output
false.
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